Skip to main content
Log in

Dispersion of Slow Magnetoacoustic Waves in the Active Region Fan Loops Introduced by Thermal Misbalance

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Slow magnetoacoustic waves observed in the solar corona are used as seismological probes of plasma parameters. It has been shown that the dispersion properties of such waves can vary significantly under the influence of the wave-induced thermal misbalance. In the current research, we study the effect of misbalance on waves inside the magnetic-flux tube under the second-order thin-flux-tube approximation. Using the parameters of active-region-fan coronal loops, we calculated wave properties such as the phase speed and decrement. It is shown that neglecting thermal misbalance may be the reason for the substantial divergence between seismological and spectrometric estimations of plasma parameters. We also show that the frequency dependence of the phase speed is affected by two features, namely the geometric dispersion and the dispersion caused by the thermal misbalance. In contrast to the phase speed, the wave decrement primarily is affected by the thermal misbalance only. The dependencies of the phase speed and decrement of the slow wave on the magnetic field and tube cross-section are also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Dahlburg, R.B., Mariska, J.T.: 1988, Influence of heating rate on the condensational instability. Solar Phys. 117, 51. DOI. ADS.

    Article  ADS  Google Scholar 

  • Del Zanna, G., Dere, K.P., Young, P.R., Landi, E.: 2021, CHIANTI—an atomic database for emission lines. XVI. Version 10, further extensions. Astrophys. J. 909, 38. DOI. ADS.

    Article  ADS  Google Scholar 

  • Dere, K.P., Landi, E., Mason, H.E., Monsignori Fossi, B.C., Young, P.R.: 1997, CHIANTI—an atomic database for emission lines—I. Wavelengths greater than 50 Å. Astron. Astrophys. Suppl. Ser. 125, 149. DOI.

    Article  ADS  Google Scholar 

  • Duckenfield, T.J., Kolotkov, D.Y., Nakariakov, V.M.: 2021, The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys. 646, A155. DOI. ADS.

    Article  ADS  Google Scholar 

  • Edwin, P.M., Roberts, B.: 1983, Wave propagation in a magnetic cylinder. Solar Phys. 88, 179. DOI. ADS.

    Article  ADS  Google Scholar 

  • Field, G.B.: 1965, Thermal instability. Astrophys. J. 142, 531. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gupta, G.R., Banerjee, D., Teriaca, L., Imada, S., Solanki, S.: 2010, Accelerating waves in polar coronal holes as seen by EIS and SUMER. Astrophys. J. 718, 11. DOI.

    Article  ADS  Google Scholar 

  • Ibanez, S., Miguel, H., Escalona, T., Orlando, B.: 1993, Propagation of hydrodynamic waves in optically thin plasmas. Astrophys. J. 415, 335. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jess, D.B., Reznikova, V.E., Ryans, R.S.I., Christian, D.J., Keys, P.H., Mathioudakis, M., Mackay, D.H., Krishna Prasad, S., Banerjee, D., Grant, S.D.T., Yau, S., Diamond, C.: 2016, Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves. Nat. Phys. 12, 179. DOI. ADS.

    Article  Google Scholar 

  • Kolotkov, D.Y., Duckenfield, T.J., Nakariakov, V.M.: 2020, Seismological constraints on the solar coronal heating function. Astron. Astrophys. 644, A33. DOI.

    Article  ADS  Google Scholar 

  • Kolotkov, D.Y., Nakariakov, V.M., Zavershinskii, D.I.: 2019, Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys. 628, A133. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Banerjee, D., Van Doorsselaere, T.: 2014, Frequency-dependent damping in propagating slow magneto-acoustic waves. Astrophys. J. 789, 118. DOI.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Jess, D.B., Van Doorsselaere, T.: 2019, The temperature-dependent damping of propagating slow magnetoacoustic waves. Front. Astron. Space Sci. 6, 57. DOI.

    Article  ADS  Google Scholar 

  • Krishna Prasad, S., Raes, J.O., Van Doorsselaere, T., Magyar, N., Jess, D.B.: 2018, The polytropic index of solar coronal plasma in sunspot fan loops and its temperature dependence. Astrophys. J. 868, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marsh, M.S., De Moortel, I., Walsh, R.W.: 2011, Observed damping of the slow magnetoacoustic mode. Astrophys. J. 734, 81. DOI. ADS.

    Article  ADS  Google Scholar 

  • Marsh, M.S., Walsh, R.W., Plunkett, S.: 2009, Three-dimensional coronal slow modes: toward three-dimensional seismology. Astrophys. J. 697, 1674. DOI. ADS.

    Article  ADS  Google Scholar 

  • Molevich, N.E., Oraevskii, A.N.: 1988, Second viscosity in thermodynamically nonequilibrium media. Zh. Eksp. Teor. Fiz 94, 128 [J. Exp. Theor. Phys. 67, 504 (1988)].

    ADS  Google Scholar 

  • Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys. 58, 441. DOI.

    Article  ADS  Google Scholar 

  • Pant, V., Tiwari, A., Yuan, D., Banerjee, D.: 2017, First imaging observation of standing slow wave in coronal fan loops. Astrophys. J. Lett. 847, L5. DOI.

    Article  ADS  Google Scholar 

  • Parker, E.N.: 1953, Instability of thermal fields. Astrophys. J. 117, 431. DOI. ADS.

    Article  ADS  Google Scholar 

  • Prasad, A., Srivastava, A.K., Wang, T.: 2021, Effect of thermal conductivity, compressive viscosity and radiative cooling on the phase shift of propagating slow waves with and without heating–cooling imbalance. Solar Phys. 296, 105. DOI.

    Article  ADS  Google Scholar 

  • Reale, F.: 2016, Plasma sloshing in pulse-heated solar and stellar coronal loops. Astrophys. J. Lett. 826, L20. DOI.

    Article  ADS  Google Scholar 

  • Rosner, R., Tucker, W.H., Vaiana, G.S.: 1978, Dynamics of the quiescent solar corona. Astrophys. J. 220, 643. DOI. ADS.

    Article  ADS  Google Scholar 

  • Van Doorsselaere, T., Wardle, N., Del Zanna, G., Jansari, K., Verwichte, E., Nakariakov, V.M.: 2011, The first measurement of the adiabatic index in the solar corona using time-dependent spectroscopy of Hinode/EIS observations. Astrophys. J. Lett. 727, L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, T.: 2011, Standing slow-mode waves in hot coronal loops: observations, modeling, and coronal seismology. Space Sci. Rev. 158, 397. DOI.

    Article  ADS  Google Scholar 

  • Yuan, D., Nakariakov, V.M.: 2012, Measuring the apparent phase speed of propagating EUV disturbances. Astron. Astrophys. 543, A9. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zaitsev, V.V., Stepanov, A.V.: 1975, On the origin of pulsations of type IV solar radio emission. Plasma cylinder oscillations (I). Issled. Geomagn. Aèron. Fiz. Solntsa 37, 3. ADS.

    ADS  Google Scholar 

  • Zaitsev, V.V., Stepanov, A.V.: 1982, On the origin of the hard X-ray pulsations during solar flares. Sov. Astron. Lett. 8, 132. ADS.

    ADS  Google Scholar 

  • Zavershinskii, D.I., Kolotkov, D.Y., Nakariakov, V.M., Molevich, N.E., Ryashchikov, D.S.: 2019, Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas 26, 082113. DOI.

    Article  ADS  Google Scholar 

  • Zavershinskii, D., Kolotkov, D., Riashchikov, D., Molevich, N.: 2021, Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance. Solar Phys. 296, 96. DOI.

    Article  ADS  Google Scholar 

  • Zhugzhda, Y.D.: 1996, Force-free thin flux tubes: basic equations and stability. Phys. Plasmas 3, 10. DOI.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The study was supported in part by the Ministry of Education and Science of Russia by State assignment to educational and research institutions under Project No. FSSS-2020-0014 and No. 0023-2019-0003, and by RFBR, project number 20-32-90018. CHIANTI is a collaborative project involving George Mason University, the University of Michigan (USA), University of Cambridge (UK), and NASA Goddard Space Flight Center (USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Belov.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Magnetohydrodynamic (MHD) Waves and Oscillations in the Sun’s Corona and MHD Coronal Seismology

Guest Editors: Dmitrii Kolotkov and Bo Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, S.A., Molevich, N.E. & Zavershinskii, D.I. Dispersion of Slow Magnetoacoustic Waves in the Active Region Fan Loops Introduced by Thermal Misbalance. Sol Phys 296, 122 (2021). https://doi.org/10.1007/s11207-021-01868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01868-4

Keywords

Navigation