Skip to main content
Log in

Degradation Correction of TSIS SIM

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An understanding of solar variability over a broad spectral range and broad range of timescales is needed by scientists studying Earth’s climate. The Total and Spectral Solar Irradiance Sensor (TSIS) Spectral Irradiance Monitor (SIM), is designed to measure solar spectral irradiance (SSI) with unprecedented accuracy from 200 nm to 2400 nm. SIM started daily observations in March 2018. To maintain its accuracy over the course of its anticipated 5-year mission and beyond, TSIS SIM needs to be corrected for optical degradation, common for solar viewing instruments. The differing long-term trends of various independent solar-irradiance records attest to the challenge at hand.

The correction of TSIS SIM for optical degradation is based on piecewise linear fits that bring the three instrument channels into agreement. It is fundamentally different to the correction applied to the TSIS SIM predecessor on SORCE. The correction facilitates reproducibility, uncertainty estimation and is measurement-based. Corrected, integrated TSIS SIM SSI agrees with independent observations of total solar irradiance to within 45 ppm as well as various solar-irradiance models. TSIS SIM SSI is available at: http://lasp.colorado.edu/lisird/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Béland, S., Harder, J., Woods, T.: 2013, 10 years of degradation trends of the SORCE SIM instrument. In: SPIE 8862. 88620O.

    Google Scholar 

  • Béland, S., Harder, J., Woods, T.: 2014, Eleven years of tracking the SORCE SIM instrument degradation caused by space radiation and solar exposure. In: Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave. 91434W.

    Google Scholar 

  • BenMoussa, A., Gissot, S., Schühle, U., Del Zanna, G., Auchère, F., Mekaoui, S., Jones, A.R., Walton, D., Eyles, C.J., et al.: 2013, On-orbit degradation of solar instruments. Solar Phys. 288, 389. DOI.

    Article  ADS  Google Scholar 

  • Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., Lindholm, D.: 2015, A solar irradiance climate data record. Bull. Am. Meteorol. Soc. 97, 1265. DOI.

    Article  ADS  Google Scholar 

  • Dewitte, S., Crommelynck, D., Joukoff, A.: 2004, Total solar irradiance observations from DIARAD/VIRGO. J. Geophys. Res. 109, A02102. DOI.

    Article  ADS  Google Scholar 

  • Dudok de Wit, T., Kopp, G., Fröhlich, C., Schöll, M.: 2017, Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys. Res. Lett. 44, 1196. DOI.

    Article  ADS  Google Scholar 

  • Ermolli, I., Matthes, K., Dudok De Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., et al.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945. DOI.

    Article  ADS  Google Scholar 

  • Fligge, M., Solanki, S.K., Unruh, Y.C.: 2000, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys. 353, 380.

    ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., et al.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001. DOI.

    Article  ADS  Google Scholar 

  • Haberreiter, M., Schöll, M., Dudok de Wit, T., Kretzschmar, M., Misios, S., Tourpali, K., Schmutz, W.: 2017, A new observational solar irradiance composite. J. Geophys. Res. 122, 5910. DOI.

    Article  Google Scholar 

  • Haigh, J.D.: 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature 370, 544. DOI.

    Article  ADS  Google Scholar 

  • Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature 467, 696. DOI.

    Article  ADS  Google Scholar 

  • Harder, J., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett. 36, 1. DOI.

    Article  Google Scholar 

  • Harder, J., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 141.

    Chapter  Google Scholar 

  • Kopp, G.: 2016, Magnitudes and timescales of total solar irradiance variability. J. Space Weather Space Clim. 6, A30. DOI.

    Article  ADS  Google Scholar 

  • Kopp, G., Lawrence, G.: 2005, The total irradiance monitor (TIM): instrument design. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 91.

    Chapter  Google Scholar 

  • Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in cycle 23: Is solar surface magnetism the cause? Astron. Astrophys. 399, L1. DOI.

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K., Floyd, L.: 2006, Reconstruction of solar UV irradiance in cycle 23. Astron. Astrophys. 452, 631. DOI.

    Article  ADS  Google Scholar 

  • LASP: 2019, SORCE SIM Release Notes for Version 25, Level 3 data product. http://lasp.colorado.edu/home/sorce/files/2019/03/SORCE_SIM_Release_Notes_for_Version25.pdf. Accessed 13 Nov 2019.

  • Lean, J.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett. 27, 2425. DOI.

    Article  ADS  Google Scholar 

  • Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys. 230, 27. DOI.

    Article  ADS  Google Scholar 

  • Lean, J.L., DeLand, M.T.: 2012, How does the Sun’s spectrum vary? J. Climate 25, 2555. DOI.

    Article  ADS  Google Scholar 

  • Lean, J.L., Woods, T.N.: 2010, Solar spectral irradiance: Measurements and models. In: Schrijver, C.J., Siscoe, L., George, L. (eds.) Heliophysics: Evolving Solar Activity and the Climates of Space and Earth, Cambridge University Press, Cambridge, 269.

    Chapter  Google Scholar 

  • Marchenko, S.V., Deland, M.T.: 2014, Solar spectral irradiance changes during cycle 24. Astrophys. J. 789, 117. DOI.

    Article  ADS  Google Scholar 

  • Marchenko, S.V., DeLand, M.T., Lean, J.L.: 2016, Solar spectral irradiance variability in cycle 24: Observations and models. J. Space Weather Space Clim. 40, 1. DOI.

    Article  Google Scholar 

  • Mauceri, S., Pilewskie, P., Richard, E., Coddington, O., Harder, J., Woods, T.: 2018, Revision of the Sun’s spectral irradiance as measured by SORCE SIM. Solar Phys. 293, 161. DOI.

    Article  ADS  Google Scholar 

  • Mauceri, S., Coddington, O., Lyles, D., Pilewskie, P.: 2019, Neural network for solar irradiance modeling (NN-SIM). Solar Phys. 294, 160. DOI.

    Article  ADS  Google Scholar 

  • Mauceri, S., Pilewskie, P., Woods, T., Beland, S., Richard, E.C.: 2020, Inter-comparing solar spectral irradiance from SORCE SIM. Earth Space Sci. 7(4), e2019EA001002. DOI.

    Article  ADS  Google Scholar 

  • McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 225.

    Chapter  Google Scholar 

  • Pilewskie, P., Richard, E., Coddington, O., Harder, J.: 2016, Solar spectral irradiance and climate: Current understanding and future observations from the total and spectral solar irradiance sensor. In: Int. Radiat. Symp. Univ. Auckland, New Zeal.

    Google Scholar 

  • Richard, E., Harber, D., Coddington, O., Drake, G., Rutkowski, J., Triplett, M., Pilewskie, P., Woods, T.: 2020, SI-traceable spectral irradiance radiometric characterization and absolute calibration of the TSIS-1 Spectral Irradiance Monitor (SIM). Remote Sens. 12, 1818.

    Article  ADS  Google Scholar 

  • Woods, T.N., Eparvier, F.G., Harder, J., Snow, M.: 2018, Decoupling solar variability and instrument trends using the Multiple Same-Irradiance-Level (MuSIL) analysis technique. Solar Phys. 293, 76. DOI.

    Article  ADS  Google Scholar 

  • Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, A85. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the scientists and engineers that worked for more than a decade to make TSIS SIM a reality.

Furthermore, we thank the scientists and engineers that made the many solar-irradiance datasets available that we compared to. For comparison, we made use of the SATIRE-S and NRLSSI2 solar-irradiance models, SORCE SIM SSI, SORCE SOLSTICE SSI, SORCE TIM TSI, and TSIS TIM TSI.

This research was supported in part by 80GSFC18C0056.

Author information

Authors and Affiliations

Authors

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauceri, S., Richard, E., Pilewskie, P. et al. Degradation Correction of TSIS SIM. Sol Phys 295, 152 (2020). https://doi.org/10.1007/s11207-020-01707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01707-y

Keywords

Navigation