Skip to main content

Advertisement

Log in

Neural Network for Solar Irradiance Modeling (NN-SIM)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

An understanding of solar variability over a broad range of wavelengths and timescales is needed by scientists studying Earth’s climate. While the current understanding of solar irradiance from measurements and models is maturing, there remain notable areas of discrepancy that highlight a lack of understanding of the variability in solar spectral irradiance (SSI) on 27-day solar-rotational timescales and longer, and in total solar irradiance (TSI) at solar-cycle timescales and longer. The sources of instrumental noise and instability suspected behind differences in independent measurement records are actively debated. Furthermore, estimates from solar-irradiance empirical-proxy models and semi-empirical models also differ from each other and from the observations by varying degrees. To investigate whether models and observations can be brought into closer agreement we developed a novel, data-driven, solar-irradiance model using an ensemble of feed-forward artificial neural networks. Key features of our model architecture include a non-linear relationship between solar-activity proxy and irradiance with a high degree of freedom that comes from the incorporation of a greater number of solar-activity proxies than previous proxy models. Furthermore, we utilize a recent re-analysis of solar spectral irradiance (SSI) observations, stemming from a new degradation-correction methodology, to develop our model. Our approach, the Neural Network for Solar Irradiance Modeling (NN-SIM), reconstructs total solar irradiance and SSI from 205 nm to 2300 nm and from 1979 to the present day. We find close agreement between NN-SIM and various observational records as well as independent models. NN-SIM is available at lasp.colorado.edu/lisird/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Amblard, P.-O., Moussaoui, S., Dudok De Wit, T., Aboudarham, J., Kretzschmar, M., Lilensten, J., Auchère, F.: 2008, The EUV Sun as the superposition of elementary Suns. Astron. Astrophys.487, L13.

    Article  ADS  Google Scholar 

  • Ball, W., Schmutz, W., Fehlmann, A., Finsterle, W., Walter, B.: 2016, Assessing the beginning to end-of-mission sensitivity change of the PREcision MOnitor Sensor total solar irradiance radiometer (PREMOS/PICARD). J. Space Weather Space Clim.6, A32. DOI .

    Article  ADS  Google Scholar 

  • Balmaceda, L.A., Solanki, S.K., Krivova, N.A., Foster, S.: 2009, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res.114, 1. DOI .

    Article  Google Scholar 

  • Beaufays, F., Sak, H., Senior, A.: 2014, Long Short-Term Memory Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv .

  • Breiman, L.: 1996, Bagging predictors. Mach. Learn.24, 123. DOI .

    Article  MATH  Google Scholar 

  • Brueckner, G.E., Edlow, K.L., Floyd, L.E. IV, Lean, J.L., VanHoosier, M.E.: 1993, The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) experiment on board the Upper Atmosphere Research Satellite (UARS). J. Geophys. Res., Atmos.98, 10695. DOI .

    Article  ADS  Google Scholar 

  • Carlisle, C., Wedge, R., Wu, D., Stello, H., Robinson, R.: 2015, Total and Spectral Solar Irradiance Sensor (TSIS) Project Overview. ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150023359.pdf .

  • Carroll, R.J., Ruppert, D.: 1996, The use and misuse of orthogonal regression in linear errors-in-variables models. Am. Stat.50, 1.

    Google Scholar 

  • Cherkauer, K.J.: 1996, Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In: Working notes of the AAAI workshop on integrating multiple learned models, AAAI Press, Portland.

    Google Scholar 

  • Clevert, D.-A., Unterthiner, T., Hochreiter, S.: 2015, Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv .

  • Coddington, O., Lean, J.L., Pilewskie, P., Snow, M., Lindholm, D.: 2015, A solar irradiance climate data record. Bull. Am. Meteorol. Soc.97, 1265. DOI .

    Article  Google Scholar 

  • Crommelynck, D., Domingo, V.: 1984, Solar irradiance observations. Science225, 180. DOI .

    Article  ADS  Google Scholar 

  • Dewitte, S., Nevens, S.: 2016, The total solar irradiance climate data record. Astrophys. J.830, 1. DOI .

    Article  Google Scholar 

  • Dudok de Wit, T.: 2011, A method for filling gaps in solar irradiance and solar proxy data. Astron. Astrophys.533, A29. DOI .

    Article  ADS  Google Scholar 

  • Dudok de Wit, T., Bruinsma, S., Shibasaki, K.: 2014, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim.4, A06. DOI .

    Article  Google Scholar 

  • Dudok de Wit, T., Kopp, G., Fröhlich, C., Schöll, M.: 2017, Methodology to create a new total solar irradiance record: Making a composite out of multiple data records. Geophys. Res. Lett.44, 1196. DOI .

    Article  ADS  Google Scholar 

  • Elizondo, D., Hoogenboom, G., McClendon, R.W.: 1994, Development of a neural network model to predict daily solar radiation. Agric. For. Meteorol.71, 115.

    Article  ADS  Google Scholar 

  • Ermolli, I., Matthes, K., Dudok De Wit, T., Krivova, N.A., Tourpali, K., Weber, M., Unruh, Y.C., Gray, L., Langematz, U., et al.: 2013, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys.13, 3945. DOI .

    Article  ADS  Google Scholar 

  • Fligge, M., Solanki, S.K., Unruh, Y.C.: 2000, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys.353, 380.

    ADS  Google Scholar 

  • Floyd, L.E., Cook, J.W., Herring, L.C., Crane, P.C.: 2003, SUSIM’S 11-year observational record of the solar UV irradiance. Adv. Space Res.31, 2111. DOI .

    Article  ADS  Google Scholar 

  • Foukal, P., Ortiz, A., Schnerr, R.: 2011, Dimming of the 17th century sun. Astrophys. J. Lett.733, L38.

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2007, Solar irradiance variability since 1978. In: Calisesi, Y., Bonnet, M., Gray, L., Langen, J., Lockwood, M. (eds.) Solar Variability and Planetary Climates, Springer, New York, 53.

    Chapter  Google Scholar 

  • Fröhlich, C.: 2003, Long-term behaviour of space radiometers. Metrologia40, S60. DOI .

    Article  Google Scholar 

  • Fröhlich, C.: 2012, Total solar irradiance observations. Surv. Geophys.33, 453.

    Article  ADS  Google Scholar 

  • Gardner, M.W., Dorling, S.R.: 1998, Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ.32, 2627. DOI .

    Article  ADS  Google Scholar 

  • Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., et al.: 2010, Solar influences on climate. Rev. Geophys.48, RG4001. DOI .

    Article  ADS  Google Scholar 

  • Haigh, J.D.: 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature370, 544. DOI .

    Article  ADS  Google Scholar 

  • Haigh, J.D.: 2007, The Sun and the Earth’s climate. Liv. Rev. Solar Phys.4, 2. DOI .

    Article  ADS  Google Scholar 

  • Haigh, J.D., Winning, A.R., Toumi, R., Harder, J.W.: 2010, An influence of solar spectral variations on radiative forcing of climate. Nature467, 696. DOI .

    Article  ADS  Google Scholar 

  • Hansen, L.K., Salamon, P.: 1990, Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell.12, 993.

    Article  Google Scholar 

  • Harder, J., Lawrence, G., Fontenla, J., Rottman, G., Woods, T.: 2005, The spectral irradiance monitor: Scientific requirements, instrument design, and operation modes. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 141.

    Chapter  Google Scholar 

  • Harder, J., Fontenla, J.M., Pilewskie, P., Richard, E.C., Woods, T.N.: 2009, Trends in solar spectral irradiance variability in the visible and infrared. Geophys. Res. Lett.36, 1. DOI .

    Article  Google Scholar 

  • Heath, D.F., Schlesinger, B.M.: 1986, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res., Atmos.91, 8672.

    Article  ADS  Google Scholar 

  • Hornik, K., Stinchcombe, M., White, H.: 1989, Multilayer feedforward networks are universal approximators. Neural Netw.2, 359. DOI .

    Article  MATH  Google Scholar 

  • Hoyt, D.V., Kyle, H.L., Hickey, J.R., Maschhoff, R.H.: 1992, The Nimbus 7 solar total irradiance: A new algorithm for its derivation. J. Geophys. Res.97, 51. DOI .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Silva, S., Woodard, M., Willson, R.C.: 1982, The effects of sunspots on solar irradiance. Solar Phys.76, 211. DOI .

    Article  ADS  Google Scholar 

  • Jin, F., Sun, S.: 2008, Neural network multitask learning for traffic flow forecasting. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), IEEE Press, New York 1897.

    Google Scholar 

  • Kingma, D.P., Ba, J.: 2014, Adam: A Method for Stochastic Optimization. arXiv .

  • Kopp, G., Lawrence, G.: 2005, The total irradiance monitor (TIM): Instrument design. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 91.

    Chapter  Google Scholar 

  • Kopp, G., Lean, J.L.: 2011, A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett.38, 1. DOI .

    Article  Google Scholar 

  • Kren, A.C.: 2015, Investigating the role of the Sun, the quasi-biennial oscillation, and the pacific decadal oscillation on decadal climate variability of the stratosphere. Atmospheric & Oceanic Sciences Graduate Theses & Dissertations, University of Colorado at Boulder.

  • Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in Cycle 23: Is solar surface magnetism the cause? Astron. Astrophys.399, L1.

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K., Floyd, L.: 2006, Reconstruction of solar UV irradiance in Cycle 23. Astron. Astrophys.452, 631.

    Article  ADS  Google Scholar 

  • Krizhevsky, A., Sutskever, I., Hinton, G.E.: 2012, ImageNet classification with deep convolutional neural networks. Adv. Neural Info. Proc. Syst. 1097. citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.205

  • LASP: 2019, SORCE SIM Release Notes for Version 25, Level 3 data product. http://lasp.colorado.edu/home/sorce/files/2019/03/SORCE_SIM_Release_Notes_for_Version25.pdf .

  • Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: 1997, Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw.8, 98. DOI .

    Article  Google Scholar 

  • Lean, J.: 2000, Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys. Res. Lett.27, 2425.

    Article  ADS  Google Scholar 

  • Lean, J.: 1990, A comparison of models of the Sun’s extreme ultraviolet irradiance variations. J. Geophys. Res.95, 11933.

    Article  ADS  Google Scholar 

  • Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys.230, 27. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., DeLand, M.T.: 2012, How does the Sun’s spectrum vary? J. Climate25, 2555. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Woods, T.N.: 2010, Solar spectral irradiance: Measurements and models. In: Schrijver, C.J., Siscoe, L., George, L. (eds.) Heliophysics: Evolving Solar Activity and the Climates of Space and Earth, Cambridge University Press, Cambridge, 269.

    Chapter  Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: 2015, Deep learning. Nature521, 436. DOI .

    Article  ADS  Google Scholar 

  • Lee, R.B., Gibson, M.A., Wilson, R.S., Thomas, S.: 1995, Long-term total solar irradiance variability during sunspot Cycle 22. J. Geophys. Res.100, 1667. DOI .

    Article  ADS  Google Scholar 

  • Levelt, P.F., van den Oord, G.H.J., Dobber, M.R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J.O.V., Saari, H.: 2006, The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens.44, 1093.

    Article  ADS  Google Scholar 

  • Marchenko, S., DeLand, M.: 2018, OMI Solar Spectral Irradiance Data (UPDATE). sbuv2.gsfc.nasa.gov/solar/omi/ . Accessed 11 May 2019.

  • Marchenko, S.V., Deland, M.T.: 2014, Solar spectral irradiance changes during Cycle 24. Astrophys. J.789, 117. DOI .

    Article  ADS  Google Scholar 

  • Marchenko, S.V., DeLand, M.T., Lean, J.L.: 2016, Solar spectral irradiance variability in Cycle 24: Observations and models. J. Space Weather Space Clim.40, 1. DOI .

    Article  Google Scholar 

  • Matthes, K., Funke, B., Anderson, M., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M., Dudok de Wit, T., Haberreiter, M., et al.: 2017, Solar forcing for CMIP6 (v3.2). Geosci. Model Dev.10, 2247.

    Article  ADS  Google Scholar 

  • Mauceri, S., Pilewskie, P., Richard, E., Coddington, O., Harder, J., Woods, T.: 2018, Revision of the Sun’s spectral irradiance as measured by SORCE SIM. Solar Phys.293, 161. DOI .

    Article  ADS  Google Scholar 

  • McClintock, W.E., Rottman, G.J., Woods, T.N.: 2005, Solar-stellar irradiance comparison experiment II (SOLSTICE II): instrument concept and design. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 225.

    Chapter  Google Scholar 

  • Mekaoui, S., Dewitte, S.: 2008, Total solar irradiance measurement and modelling during Cycle 23. Solar Phys.247, 203. DOI .

    Article  ADS  Google Scholar 

  • Mellit, A., Pavan, A.M.: 2010, A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy84, 807.

    Article  ADS  Google Scholar 

  • Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., Khudanpur, S.: 2010, Recurrent neural network based language model. In: Eleventh Ann. Conf. International Speech Comm. Assoc., 1045.

    Google Scholar 

  • Mohandes, M., Rehman, S., Halawani, T.O.: 1998, Estimation of global solar radiation using artificial neural networks. Renew. Energy14, 179.

    Article  Google Scholar 

  • Pilewskie, P., Kopp, G., Richard, E., Coddington, O., Sparn, T., Woods, T.: 2018, TSIS-1 and continuity of the total and spectral solar irradiance climate data record. In: EGU General Assembly Conf. Abs., 5527.

    Google Scholar 

  • Rempel, M., Schlichenmaier, R.: 2011, Sunspot modeling: From simplified models to radiative MHD simulations. Liv. Rev. Solar Phys.8, 3.

    ADS  Google Scholar 

  • Richard, E., Harber, D., Drake, G., Rutkowsi, J., Castleman, Z., Smith, M., Sprunck, J., Zheng, W., Smith, P., et al.: 2019, The compact spectral irradiance monitor flight demonstration mission. In: Thomas, S., Pagano, D., Charles, D., Norton, R., Sachidananda, R.B. (eds.) CubeSats and SmallSats for Remote Sensing III, SPIE, Bellingham 15.

    Google Scholar 

  • Rottman, G., Woods, T., Snow, M., DeToma, G.: 2001, The solar cycle variation in ultraviolet irradiance. Adv. Space Res.27, 1927. DOI .

    Article  ADS  Google Scholar 

  • Schöll, M., Dudok de Wit, T., Kretzschmar, M., Haberreiter, M.: 2016, Making of a solar spectral irradiance dataset I: Observations, uncertainties, and methods. J. Space Weather Space Clim.6, A14. DOI .

    Article  ADS  Google Scholar 

  • Seltzer, M.L., Droppo, J.: 2013, Multi-task learning in deep neural networks for improved phoneme recognition. IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, Vancouver, 6965.

  • Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., et al.: 2016, Mastering the game of Go with deep neural networks and tree search. Nature529, 484. DOI .

    Article  ADS  Google Scholar 

  • Snow, M., Mcclintock, W.E., Woods, T.N., White, O.R., Harder, J.W., Rottman, G.: 2005, The Mg ii index from SORCE. In: Rottman, G., Woods, T., George, V. (eds.) The Solar Radiation and Climate Experiment (SORCE), Springer, New York, 325.

    Chapter  Google Scholar 

  • Snow, M., Weber, M., Machol, J., Viereck, R., Richard, E.: 2014, Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24. J. Space Weather Space Clim.4, A04. DOI .

    Article  Google Scholar 

  • Spearman, C.: 1904, The proof and measurement of association between two things. Am. J. Psychol.15, 72.

    Article  Google Scholar 

  • Tapping, K.F.: 1987, Recent solar radio astronomy at centimeter wavelengths: The temporal variability of the 10.7-cm flux. J. Geophys. Res., Atmos.92, 829.

    Article  ADS  Google Scholar 

  • Tapping, K.F.: 2013, The 10.7 cm solar radio flux (F10.7). Space Weather11, 394.

    Article  ADS  Google Scholar 

  • Tebabal, A., Damtie, B., Nigussie, M., Bires, A., Yizengaw, E.: 2015, Modeling total solar irradiance from PMOD composite using feed-forward neural networks. J. Atmos. Solar-Terr. Phys.135, 64. DOI .

    Article  ADS  Google Scholar 

  • Tebabal, A., Damtie, B., Nigussie, M., Yizengaw, E.: 2017, Temporal variations in solar irradiance since 1947. Solar Phys.292, 1. DOI .

    Article  Google Scholar 

  • Tobiska, W.K.: 1996, Current status of solar EUV measurements and modeling. Adv. Space Res.18, 3.

    Article  ADS  Google Scholar 

  • Viereck, R., Puga, L., McMullin, D., Judge, D., Weber, M., Tobiska, W.K.: 2001, The Mg ii index: A proxy for solar EUV. Geophys. Res. Lett.28, 1343.

    Article  ADS  Google Scholar 

  • Viereck, R.A., Floyd, L.E., Crane, P.C., Woods, T.N., Knapp, B.G., Rottman, G., Weber, M., Puga, L.C., DeLand, M.T.: 2004, A composite Mg ii index spanning from 1978 to 2003. Space Weather2, S10005. DOI .

    Article  ADS  Google Scholar 

  • Walton, S.R., Preminger, D.G., Chapman, G.A.: 2003, The contribution of faculae and network to long-term changes in the total solar irradiance. Astrophys. J.590, 1088.

    Article  ADS  Google Scholar 

  • West, D., Dellana, S., Qian, J.: 2005, Neural network ensemble strategies for financial decision applications. Comput. Oper. Res.32, 2543. DOI .

    Article  MATH  Google Scholar 

  • Willson, R.: 1994, Irradiance Observations of SMM, Spacelab 1, UARS, and ATLAS Experiments. In: Int. Astron. Union Colloq.143, 54. DOI .

    Chapter  Google Scholar 

  • Willson, R.C.: 2001, The ACRIMSAT/ACRIM III experiment—extending the precision, long-term total solar irradiance climate database. Earth Obs.13, 14.

    Google Scholar 

  • Willson, R.C.: 2014, ACRIM3 and the total solar irradiance database. Astrophys. Space Sci.352, 341. DOI .

    Article  ADS  Google Scholar 

  • Willson, R.C., Hudson, H.S.: 1991, The Sun’s luminosity over a complete solar cycle. Nature351, 42. DOI .

    Article  ADS  Google Scholar 

  • Willson, R.C., Mordvinov, A.V.: 2003, Secular total solar irradiance trend during Solar Cycles 21–23. Geophys. Res. Lett.30, 1199. DOI .

    Article  ADS  Google Scholar 

  • Woods, T.N., Chamberlin, P.C., Harder, J.W., Hock, R.A., Snow, M., Eparvier, F.G., Fontenla, J., McClintock, W.E., Richard, E.C.: 2009, Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett.36, 1. DOI .

    Article  Google Scholar 

  • Woods, T.N., Eparvier, F.G., Bailey, S.M., Chamberlin, P.C., Lean, J., Rottman, G.J., Solomon, S.C., Tobiska, W.K., Woodraska, D.L.: 2005, Solar EUV Experiment (SEE): Mission overview and first results. J. Geophys. Res.110, A01312. DOI .

    Article  ADS  Google Scholar 

  • Woods, T.N., Tobiska, W.K., Rottman, G.J., Worden, J.R.: 2000, Improved solar Lyman \(\alpha \) irradiance modeling from 1947 through 1999 based on UARS observations. J. Geophys. Res.105, 27195. DOI .

    Article  ADS  Google Scholar 

  • Yaya, P., Hecker, L., Dudok de Wit, T., Le Fèvre, C., Bruinsma, S.: 2017, Solar radio proxies for improved satellite orbit prediction. J. Space Weather Space Clim.7, A35. DOI .

    Article  ADS  Google Scholar 

  • Yeo, K.L., Ball, W.T., Krivova, N.A., Solanki, S.K., Unruh, Y.C., Morrill, J.: 2015, UV solar irradiance in observations and the NRLSSI and SATIRE-S models. J. Geophys. Res.120, 6055.

    Article  Google Scholar 

  • Yeo, K.L., Krivova, N.A., Solanki, S.K.: 2017, EMPIRE: A robust empirical reconstruction of solar irradiance variability. J. Geophys. Res.122, 3888. DOI .

    Article  Google Scholar 

  • Yeo, K.L., Krivova, N.A., Solanki, S.K., Glassmeier, K.H.: 2014, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys.570, A85. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the scientists and engineers that made the many solar-irradiance and solar-proxy datasets available that we used to train and validate our model. For comparison, we made use of the SATIRE-S and EMPIRE solar irradiance models. Furthermore, we compared to SORCE/SIM SSI, SORCE/SOLSTICE SSI and Mg ii index, Aura/OMI SSI, SORCE/TIM TSI and the TSIc, PMOD, ACRIM, RMIB TSI composites. Finally, the Mg ii index from the University of Bremen, Ly \(\alpha \) composite from lasp.colorado.edu/lisird/data/composite_lyman_alpha/, \(\mbox{F}_{10.7}, \mbox{F}_{15}, \mbox{F}_{30}\) solar flux from spaceweather.cls.fr/services/radioflux/, and SORCE/TIM were directly used for NN-SIM. We acknowledge receipt from PMOD/WRC, Davos, Switzerland, of the updated dataset 42_65_1709 with new data from the VIRGO experiment on the cooperative ESA/NASA Mission SOHO. Additionally, we acknowledge that the the development of the independently derived uncertainties for PSI, Ly \(\alpha\), and TSI received funding from the European Community’s Seventh Framework Programme (FP7 2012) Project SOLID (projects.pmodwrc.ch/solid/) under grant agreement no 313188. Furthermore, we acknowledge the collaboration with the International Team on “Scenarios of Future Solar Activity for Climate Modelling” at the International Space Science Institute (ISSI, Bern), and the COST Action TOSCA (Towards a more complete understanding of the solar influence on climate).

This research was supported in part by 80NSSC18K1304 and NNX15AK59G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Mauceri.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

Irradiance Variations of the Sun and Sun-like Stars

Guest Editors: Greg Kopp and Alexander Shapiro

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauceri, S., Coddington, O., Lyles, D. et al. Neural Network for Solar Irradiance Modeling (NN-SIM). Sol Phys 294, 160 (2019). https://doi.org/10.1007/s11207-019-1555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1555-y

Keywords

Navigation