Skip to main content
Log in

Image Quality in High-resolution and High-cadence Solar Imaging

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Acton, D.S., Smithson, R.C.: 1992, Solar imaging with a segmented adaptive mirror. Appl. Opt. 31, 3161. DOI .

    Article  ADS  Google Scholar 

  • Ballesteros, E., Collados, M., Bonet, J.A., Lorenzo, F., Viera, T., Reyes, M., Rodriguez Hidalgo, I.: 1996, Two-dimensional, high spatial resolution, solar spectroscopy using a correlation tracker, I: correlation tracker description. Astron. Astrophys. Suppl. Ser. 115, 353.

    ADS  Google Scholar 

  • Beard, A., Cowan, B., Ferayorni, A.: 2014, DKIST visible broadband imager data processing pipeline. In: Chiozzi, G., Radziwill, N.M. (eds.) Software and Cyberinfrastructure for Astronomy III, Proc. SPIE 9152, 91521J. DOI .

    Google Scholar 

  • Bello González, N., Kneer, F.: 2008, Narrow-band full stokes polarimetry of small structures on the Sun with Speckle methods. Astron. Astrophys. 480, 265. DOI .

    Article  ADS  Google Scholar 

  • Berkefeld, T., Soltau, D., Schmidt, D., von der Lühe, O.: 2010, Adaptive optics development at the German solar telescopes. Appl. Opt. 49, G155. DOI .

    Article  Google Scholar 

  • Berkefeld, T., Schmidt, D., Soltau, D., von der Lühe, O., Heidecke, F.: 2012, The GREGOR adaptive optics system. Astron. Nachr. 333, 863. DOI .

    Article  ADS  Google Scholar 

  • Berukoff, S., Hays, T., Reardon, K., Spiess, D., Watson, F., Wiant, S.: 2016, Petascale cyberinfrastructure for ground-based solar physics: approach of the DKIST data center. In: Chiozzi, G., Guzman, J.C. (eds.) Software and Cyberinfrastructure for Astronomy IV, Proc. SPIE 9913, 99131F. DOI .

    Google Scholar 

  • Brandt, P.N., Wöhl, H.: 1982, Solar site-testing campaign of JOSO on the Canary Islands in 1979. Astron. Astrophys. 109, 77.

    ADS  Google Scholar 

  • Carlsson, M., Stein, R.F., Nordlund, Å., Scharmer, G.B.: 2004, Observational manifestations of solar magnetoconvection: center-to-limb variation. Astrophys. J. Lett. 610, L137. DOI .

    Article  ADS  Google Scholar 

  • Collados, M., Bettonvil, F., Cavaller, L., Ermolli, I., Gelly, B., Grivel-Gelly, C., Pérez, A., Socas-Navarro, H., Soltau, D., Volkmer, R.: 2010, European Solar Telescope: project status. In: Stepp, L.M., Gilmozzi, R., Hall, H.J. (eds.) Ground-based and airborne telescopes III, Proc. SPIE 7733, 77330H.

    Chapter  Google Scholar 

  • de Boer, C.R.: 1993, Speckle-Interferometrie und ihre Anwendung auf die Sonnenbeobachtung. PhD thesis, Georg-August Universität Göttingen, Germany.

  • Deng, H., Zhang, D., Wang, T., Ji, K., Wang, F., Liu, Z., Xiang, Y., Jin, Z., Cao, W.: 2015, Objective image-quality assessment for high-resolution photospheric images by median filter-gradient similarity. Solar Phys. 290, 1479. DOI .

    Article  ADS  Google Scholar 

  • Denker, C.: 2010, Instrument and data analysis challenges for imaging spectropolarimetry. Astron. Nachr. 331, 648. DOI .

    Article  ADS  Google Scholar 

  • Denker, C., Yang, G., Wang, H.: 2001, Near real-time image reconstruction. Solar Phys. 202, 63.

    Article  ADS  Google Scholar 

  • Denker, C., Mascarinas, D., Xu, Y., Cao, W., Yang, G., Wang, H., Goode, P.R., Rimmele, T.R.: 2005, High-spatial resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction. Solar Phys. 227, 217. DOI .

    Article  ADS  Google Scholar 

  • Denker, C., Tritschler, A., Rimmele, T.R., Richards, K., Hegwer, S.L., Wöger, F.: 2007a, Adaptive optics at the Big Bear Solar Observatory: instrument description and first observations. Publ. Astron. Soc. Pac. 119, 170. DOI .

    Article  ADS  Google Scholar 

  • Denker, C., Deng, N., Rimmele, T.R., Tritschler, A., Verdoni, A.: 2007b, Field-dependent adaptive optics correction derived with the spectral ratio technique. Solar Phys. 241, 411. DOI .

    Article  ADS  Google Scholar 

  • Denker, C., Balthasar, H., Hofmann, A., Bello González, N., Volkmer, R.: 2010, The GREGOR Fabry–Pérot interferometer: a new instrument for high-resolution solar observations. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds.) Ground-Based and Airborne Instrumentation for Astronomy III, Proc. SPIE 7735, 77356M. DOI .

    Chapter  Google Scholar 

  • Denker, C., von der Lühe, O., Feller, A., Arlt, K., Balthasar, H., Bauer, S.-M., Bello González, N., Berkefeld, T., Caligari, P., Collados, M., Fischer, A., Granzer, T., Hahn, T., Halbgewachs, C., Heidecke, F., Hofmann, A., Kentischer, T., Klvaňa, M., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Rendtel, J., Schmidt, D., Schmidt, W., Sobotka, M., Solanki, S.K., Soltau, D., Staude, J., Strassmeier, K.G., Volkmer, R., Waldmann, T., Wiehr, E., Wittmann, A.D., Woche, M.: 2012, A retrospective of the GREGOR solar telescope in scientific literature. Astron. Nachr. 333, 810. DOI .

    Article  ADS  Google Scholar 

  • Denker, C., Kuckein, C., Verma, M., González Manrique, S.J., Diercke, A., Enke, H., Klar, J., Balthasar, H., Louis, R.E., Dineva, E.: 2018a, Data analysis and management for high-resolution solar physics – image restoration and imaging spectroscopy at the GREGOR solar telescope. Astrophys. J. Suppl., submitted for publication.

  • Denker, C., Kuckein, C., Verma, M., Balthasar, H., Diercke, A., Dineva, E., González Manrique, S.J., Louis, R.E., Seelemann, T., Hoch, S.: 2018b, High-Resolution Fast Imager (HiFI) for image restoration. Astron. Nachr., in preparation.

  • Fried, D.L.: 1965, Statistics of a geometric representation of wavefront distortion. J. Opt. Soc. Am. A 55, 1427. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Fried, D.L., Mevers, G.E.: 1974, Evaluation of \(r_{0}\) for propagation down through the atmosphere. Appl. Opt. 13, 2620. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, R.C., Woods, R.E.: 2002, Digital Image Processing, Prentice–Hall, Upper Saddle River.

    Google Scholar 

  • Halbgewachs, C., Caligari, P., Glogowski, K., Heidecke, F., Knobloch, M., Mustedanagic, M., Volkmer, R., Waldmann, T.A.: 2012, The GREGOR telescope control system. Astron. Nachr. 333, 840. DOI .

    Article  ADS  Google Scholar 

  • Irbah, A., Borgnino, J., Laclare, F., Merlin, G.: 1993, Isoplanatism and high spatial resolution solar imaging. Astron. Astrophys. 276, 663.

    ADS  Google Scholar 

  • Kitai, R., Funakoshi, Y., Ueno, S., Ichimoto, S.S.K.: 1997, Real-time frame selector and its application to observations of the horizontal velocity field in the solar photosphere. Publ. Astron. Soc. Japan 49, 513. DOI .

    Article  ADS  Google Scholar 

  • Kneer, F.: 2012, Hopes and expectations with GREGOR. Astron. Nachr. 333, 790. DOI .

    Article  ADS  Google Scholar 

  • Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D., Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007, The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 3. DOI .

    Article  ADS  Google Scholar 

  • Kuckein, C., Denker, C., Verma, M., Balthasar, H., González Manrique, S.J., Louis, R.E., Diercke, A.: 2017, sTools – a data reduction pipeline for the GREGOR Fabry–Pérot interferometer and the high-resolution fast imager at the GREGOR solar telescope. In: Vargas Domínguez, S., Kosovichev, A.G., Harra, L., Antolin, P. (eds.) Fine Structure and Dynamics of the Solar Atmosphere, IAU Symp. 327, 20. DOI .

    Google Scholar 

  • Law, N.M., Mackay, C.D., Baldwin, J.E.: 2006, Lucky imaging: high angular resolution imaging in the visible from the ground. Astron. Astrophys. 446, 739. DOI .

    Article  ADS  Google Scholar 

  • Law, N.M., Mackay, C.D., Dekany, R.G., Ireland, M., Lloyd, J.P., Moore, A.M., Robertson, J.G., Tuthill, P., Woodruff, H.C.: 2009, Getting lucky with adaptive optics: fast adaptive optics image selection in the visible with a Large Telescope. Astrophys. J. 692, 924. DOI .

    Article  ADS  Google Scholar 

  • Leenaarts, J., Rutten, R.J., Carlsson, M., Uitenbroek, H.: 2006, A comparison of solar proxy-magnetometry diagnostics. Astron. Astrophys. 452, L15. DOI .

    Article  ADS  Google Scholar 

  • Liu, Z., Xu, J., Gu, B.-Z., Wang, S., You, J.-Q., Shen, L.-X., Lu, R.-W., Jin, Z.-Y., Chen, L.-F., Lou, K., Li, Z., Liu, G.-Q., Xu, Z., Rao, C.-H., Hu, Q.-Q., Li, R.-F., Fu, H.-W., Wang, F., Bao, M.-X., Wu, M.-C., Zhang, B.-R.: 2014, New Vacuum Solar Telescope and observations with high resolution. Res. Astron. Astrophys. 14, 705. DOI .

    Article  ADS  Google Scholar 

  • Löfdahl, M.G.: 2002, Multi-frame blind deconvolution with linear equality constraints. In: Bones, P.J., Fiddy, M.A., Millane, R.P. (eds.) Image Reconstruction from Incomplete Data, Proc. SPIE 4792, 146. DOI .

    Chapter  Google Scholar 

  • Lohmann, A.W., Weigelt, G., Wirnitzer, B.: 1983, Speckle masking in astronomy – triple correlation theory and applications. Appl. Opt. 22, 4028. DOI .

    Article  ADS  Google Scholar 

  • Lundstedt, H., Johannesson, A., Scharmer, G., Stenflo, J.O., Kusoffsky, U.: 1991, Magnetograph observations with the Swedish Solar Telescope on La Palma. Solar Phys. 132, 233. DOI .

    Article  ADS  Google Scholar 

  • Mackay, C.: 2013, High-efficiency lucky imaging. Mon. Not. Roy. Astron. Soc. 432, 702. DOI .

    Article  ADS  Google Scholar 

  • McBride, W.R., Wöger, F., Hegwer, S.L., Ferayorni, A., Gregory, B.S.: 2012, ATST visible broadband imager. In: McLean, I.S., Ramsay, S.K., Takami, H. (eds.) Ground-Based and Airborne Instrumentation for Astronomy IV, Proc. SPIE 8446, 84461B. DOI .

    Chapter  Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427. DOI .

    Article  ADS  Google Scholar 

  • Peck, C.L., Wöger, F., Marino, J.: 2017, Influence of speckle image reconstruction on photometric precision for large solar telescopes. Astron. Astrophys. 607, A83. DOI .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI .

    Article  ADS  Google Scholar 

  • Popowicz, A., Radlak, K., Bernacki, K., Orlov, V.: 2017, Review of image quality measures for solar imaging. Solar Phys. 292, 187. DOI .

    Article  ADS  Google Scholar 

  • Puschmann, K.G., Denker, C., Kneer, F., Al Erdogan, N., Balthasar, H., Bauer, S.M., Beck, C., Bello González, N., Collados, M., Hahn, T., Hirzberger, J., Hofmann, A., Louis, R.E., Nicklas, H., Okunev, O., Martínez Pillet, V., Popow, E., Seelemann, T., Volkmer, R., Wittmann, A.D., Woche, M.: 2012, The GREGOR Fabry–Pérot interferometer. Astron. Nachr. 333, 880. DOI .

    Article  ADS  Google Scholar 

  • Qiu, P., Mao, Y.-N., Lu, X.-M., Xiang, E., Jiang, X.-J.: 2013, Evaluation of a scientific CMOS camera for astronomical observations. Res. Astron. Astrophys. 13, 615. DOI .

    Article  ADS  Google Scholar 

  • Rao, C.-H., Zhu, L., Rao, X.-J., Zhang, L.-Q., Bao, H., Ma, X.-A., Gu, N.-T., Guan, C.-L., Chen, D.-H., Wang, C., Lin, J., Jin, Z.-Y., Liu, Z.: 2016, First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory. Res. Astron. Astrophys. 16, 23. DOI .

    Article  ADS  Google Scholar 

  • Rimmele, T.R.: 2000, Solar adaptive optics. In: Wizinowich, P.L. (ed.) Adaptive Optical Systems Technology, Proc. SPIE 4007, 218. DOI .

    Chapter  Google Scholar 

  • Rimmele, T.R., Richards, K., Hegwer, S.L., Ren, D., Fletcher, S., Gregory, S., Didkovsky, L.V., Denker, C., Marquette, W., Marino, J., Goode, P.R.: 2003, Solar adaptive optics: a progress report. In: Wizinowich, P.L., Bonaccini, D. (eds.) Adaptive Optical System Technologies II, Proc. SPIE 4839, 635. DOI .

    Chapter  Google Scholar 

  • Rimmele, T.R., Richards, K., Hegwer, S., Fletcher, S., Gregory, S., Moretto, G., Didkovsky, L.V., Denker, C., Dolgushin, A., Goode, P.R., Langlois, M., Marino, J., Marquette, W.: 2004, First results from the NSO/NJIT solar adaptive optics system. In: Fineschi, S., Gummin, M.A. (eds.) Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 5171, 179. DOI .

    Chapter  Google Scholar 

  • Roddier, F., Gilli, J.M., Vernin, J.: 1982, On the isoplanatic patch size in stellar speckle interferometry. J. Opt. (Paris) 13, 63. DOI .

    Article  ADS  Google Scholar 

  • Scharmer, G., Löfdahl, M.: 1991, Swedish Solar Telescope – short summary of instrumentation and observation techniques. Adv. Space Res. 11, 129. DOI .

    Article  ADS  Google Scholar 

  • Scharmer, G.B.: 1989, High resolution granulation observations from La Palma: techniques and first results. In: Rutten, R.J., Severino, G. (eds.) Solar and Stellar Granulation, NATO Adv. Sci. Inst. (ASI) Ser. C 263, 161.

    Chapter  Google Scholar 

  • Scharmer, G.B., Gudiksen, B.V., Kiselman, D., Löfdahl, M.G., Rouppe van der Voort, L.H.M.: 2002, Dark cores in sunspot penumbral filaments. Nature 420, 151. DOI .

    Article  ADS  Google Scholar 

  • Scharmer, G.B., Dettori, P.M., Löfdahl, M.G., Shand, M.: 2003, Adaptive optics system for the new Swedish Solar Telescope. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 370. DOI .

    Chapter  Google Scholar 

  • Scharr, H.: 2007, Optimal filters for extended optical flow. In: Jähne, B., Mester, R., Barth, B., Scharr, H. (eds.) Complex Motion Lecture Notes in Computer Sciences 3417, Springer, Berlin, 14. DOI .

    Chapter  Google Scholar 

  • Scherrer, P.H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, T.L., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D., Tomczyk, S.: 2012, The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO). Solar Phys. 275, 207. DOI .

    Article  ADS  Google Scholar 

  • Schlichenmaier, R., von der Lühe, O., Hoch, S., Soltau, D., Berkefeld, T., Schmidt, D., Schmidt, W., Denker, C., Balthasar, H., Hofmann, A., Strassmeier, K.G., Staude, J., Feller, A., Lagg, A., Solanki, S.K., Collados, M., Sigwarth, M., Volkmer, R., Waldmann, T., Kneer, F., Nicklas, H., Sobotka, M.: 2016, Active region fine structure observed at 0.08 arcsec resolution. Astron. Astrophys. 596, A7. DOI .

    Article  Google Scholar 

  • Schmidt, W., Kentischer, T.: 1995, Optical system of an advanced solar correlation tracker. Astron. Astrophys. Suppl. Ser. 113, 363.

    ADS  Google Scholar 

  • Schmidt, W., von der Lühe, O., Volkmer, R., Denker, C., Solanki, S.K., Balthasar, H., Bello Gonzalez, N., Berkefeld, T., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Kneer, F., Lagg, A., Nicklas, H., Popow, E., Puschmann, K.G., Schmidt, D., Sigwarth, M., Sobotka, M., Soltau, D., Staude, J., Strassmeier, K.G., Waldmann, T.A.: 2012, The 1.5 meter solar telescope GREGOR. Astron. Nachr. 333, 796. DOI .

    Article  ADS  Google Scholar 

  • Schröter, E.H., Soltau, D., Wiehr, E.: 1985, The German solar telescopes at the observatorio del Teide. Vistas Astron. 28, 519. DOI .

    Article  ADS  Google Scholar 

  • Soltau, D., Volkmer, R., von der Lühe, O., Berkefeld, T.: 2012, Optical design of the new solar telescope GREGOR. Astron. Nachr. 333, 847. DOI .

    Article  ADS  Google Scholar 

  • Sprung, D., Sucher, E., Stein, K., von der Lühe, O., Berkefeld, T.: 2016, Characterization of optical turbulence at the GREGOR solar telescope: temporal and local behavior and its influence on the solar observations. In: Stein, K.U., Gonglewski, J.D. (eds.) Optics in Atmospheric Propagation and Adaptive Systems XIX, Proc. SPIE 10002, 1000205. DOI .

    Chapter  Google Scholar 

  • Steele, I.A., Jermak, H., Copperwheat, C.M., Smith, R.J., Poshyachinda, S., Soonthorntham, B.: 2016, Experiments with synchronized sCMOS cameras. In: Holland, A.D., Beletic, J. (eds.) High Energy, Optical, and Infrared Detectors for Astronomy VII, Proc. SPIE 9915, 991522. DOI .

    Chapter  Google Scholar 

  • Steiner, O., Hauschildt, P.H., Bruls, J.: 2001, Radiative properties of magnetic elements, I: why are G-band bright points bright? Astron. Astrophys. 372, L13. DOI .

    Article  ADS  Google Scholar 

  • Tritschler, A., Rimmele, T.R., Berukoff, S., Casini, R., Kuhn, J.R., Lin, H., Rast, M.P., McMullin, J.P., Schmidt, W., Wöger, F. (DKIST Team): 2016, Daniel K. Inouye solar telescope: high-resolution observing of the dynamic sun. Astron. Nachr. 337, 1064. DOI .

    Article  ADS  Google Scholar 

  • van Noort, M., Rouppe van der Voort, L., Löfdahl, M.G.: 2005, Solar image restoration by use of multi-frame blind deconvolution with multiple objects and phase diversity. Solar Phys. 228, 191. DOI .

    Article  ADS  Google Scholar 

  • Verma, M., Denker, C.: 2011, Horizontal flow fields observed in Hinode G-band images, I: methods. Astron. Astrophys. 529, A153. DOI .

    Article  ADS  Google Scholar 

  • Volkmer, R., von der Lühe, O., Denker, C., Solanki, S., Balthasar, H., Berkefeld, T., Caligari, P., Collados, M., Fischer, A., Halbgewachs, C., Heidecke, F., Hofmann, A., Klvaňa, M., Kneer, F., Lagg, A., Popow, E., Schmidt, D., Schmidt, W., Sobotka, M., Soltau, D., Strassmeier, K.G.: 2010, GREGOR solar telescope. Astron. Nachr. 331, 624.

    Article  ADS  Google Scholar 

  • von der Lühe, O.: 1993, Speckle imaging of solar small scale structure, I: methods. Astron. Astrophys. 268, 374.

    ADS  Google Scholar 

  • von der Lühe, O.: 1998, High-resolution observations with the German vacuum tower telescope on Tenerife. New Astron. Rev. 42, 493. DOI .

    Article  ADS  Google Scholar 

  • von der Lühe, O., Widener, A.L., Rimmele, T., Spence, G., Dunn, R.B.: 1989, Solar feature correlation tracker for ground-based telescopes. Astron. Astrophys. 224, 351.

    ADS  Google Scholar 

  • von der Lühe, O., Schmidt, W., Soltau, D., Berkefeld, T., Kneer, F., Staude, J.: 2001, GREGOR: a 1.5-meter telescope for solar research. Astron. Nachr. 322, 353.

    Article  ADS  Google Scholar 

  • von der Lühe, O., Soltau, D., Berkefeld, T., Schelenz, T.: 2003, KAOS: adaptive optics system for the Vacuum Tower telescope at Teide observatory. In: Keil, S.L., Avakyan, S.V. (eds.) Innovative Telescopes and Instrumentation for Solar Astrophysics, Proc. SPIE 4853, 187.

    Chapter  Google Scholar 

  • Wang, H., Denker, C., Spirock, T., Goode, P.R., Yang, S., Marquette, W., Varsik, J., Fear, R.J., Nenow, J., Dingley, D.D.: 1998, New Digital magnetograph at Big Bear Solar Observatory. Solar Phys. 183, 1.

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Rouppe van der Voort, L.: 2009, On the continuum intensity distribution of the solar photosphere. Astron. Astrophys. 503, 225. DOI .

    Article  ADS  Google Scholar 

  • Weigelt, G., Wirnitzer, B.: 1983, Image reconstruction by the speckle-masking method. Opt. Lett. 8, 389.

    Article  ADS  Google Scholar 

  • Wilken, V., de Boer, C.R., Denker, C., Kneer, F.: 1997, Speckle measurements of the centre-to-limb variation of the solar granulation. Astron. Astrophys. 325, 819.

    ADS  Google Scholar 

  • Wöger, F.: 2010, Optical transfer functions derived from solar adaptive optics system data. Appl. Opt. 49, 1818. DOI .

    Article  ADS  Google Scholar 

  • Wöger, F., von der Lühe, O.: 2007, Field dependent amplitude calibration of adaptive optics supported solar speckle imaging. Appl. Opt. 46, 8015. DOI .

    Article  ADS  Google Scholar 

  • Wöger, F., von der Lühe, O.: 2008, KISIP: a software package for speckle interferometry of adaptive optics corrected solar data. In: Bridger, A., Radziwill, N.M. (eds.) Advanced Software and Control for Astronomy II, Proc. SPIE 7019, 70191E. DOI .

    Chapter  Google Scholar 

  • Wöger, F., von der Lühe, O., Reardon, K.: 2008, Speckle interferometry with adaptive optics corrected solar data. Astron. Astrophys. 488, 375. DOI .

    Article  ADS  Google Scholar 

  • Zirin, H., Mosher, J.M.: 1988, The Caltech solar site survey, 1965 – 1967. Solar Phys. 115, 183. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The 1.5-meter GREGOR solar telescope was built by a German consortium under the leadership of the Kiepenheuer Institute for Solar Physics in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics Göttingen, and the Max Planck Institute for Solar System Research in Göttingen as partners, and with contributions by the Instituto de Astrofísica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic. We thank Drs. Peter Gömöry and Thomas Granzer for carefully reading the manuscript and providing valuable comments. CD, CK, HB, and MV were supported by grant DE 787/5-1 of the Deutsche Forschungsgemeinschaft (DFG). SJGM acknowledges support of project VEGA 2/0004/16 and is grateful for financial support from the Leibniz Graduate School for Quantitative Spectroscopy in Astrophysics, a joint project of the Leibniz Institute for Astrophysics Potsdam and the Institute of Physics and Astronomy of the University of Potsdam. This study is supported by the European Commission’s FP7 Capacities Program under the Grant Agreement number 312495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Denker.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denker, C., Dineva, E., Balthasar, H. et al. Image Quality in High-resolution and High-cadence Solar Imaging. Sol Phys 293, 44 (2018). https://doi.org/10.1007/s11207-018-1261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1261-1

Keywords

Navigation