Skip to main content
Log in

Characterization of the Complex Ejecta Measured In Situ on 19 – 22 March 2001 by Six Different Methods

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

This article proposes some traditional and newly developed methods to evaluate the properties of the magnetic cloud (MC) observed on 19 – 22 March 2001. We used physical and mathematical approaches to analyze the time series of solar wind plasma and interplanetary magnetic field data. Two methods that are commonly used to derive the MC properties, the minimum variance analysis and the Grad–Shafranov reconstruction, were applied to derive the properties of the MCs by fitting in situ measurements in the corresponding time intervals, as discussed in previous studies. Other methods developed by us (a travel time analysis of the interplanetary coronal mass ejection, spatio-temporal entropy, nonlinear fluctuation analysis, and wavelet analysis) are used as auxiliary tools to help identify whether the event consists of one or possibly two MCs. Our results suggest that the 19 – 22 March 2001 event was composed by two MCs. Our results agree with those of other researchers who used various fitting methods and identified the solar origin of this event as two CMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. http://www.srl.caltech.edu/ACE/ASC/level2/index.html .

  2. http://cdaweb.gsfc.nasa.gov/istp_public/ .

  3. ftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/ace/4_min_merged_mag_plasma/ .

References

  • Bothmer, V., Rust, D.M.: 1997, The field configuration of magnetic clouds and the solar cycle. Trans. Am. Geophys. Union 99, 139. DOI . ADS .

    Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.: 1988, Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 93, 7217. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L.F.E.: 1991, In: Schwenn, R., Marsch, E. (eds.) Magnetic Clouds, 152. ADS .

    Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res. 86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chian, A.C.-L., Muñoz, P.R.: 2011, Detection of current sheets and magnetic reconnections at the turbulent leading edge of an interplanetary coronal mass ejection. Astrophys. J. Lett. 733, L34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chian, A.C.-L., Feng, H.Q., Hu, Q., Loew, M.H., Miranda, R.A., Muñoz, P.R., Sibeck, D.G., Wu, D.J.: 2016, Genesis of interplanetary intermittent turbulence: A case study of rope–rope magnetic reconnection. Astrophys. J. 832, 179. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Démoulin, P., Gulisano, A.M.: 2012, Magnetic clouds along the solar cycle: expansion and magnetic helicity. In: Mandrini, C.H., Webb, D.F. (eds.) Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, IAU Symp. 286, 139. DOI . ADS .

    Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., Gulisano, A.M.: 2005, Large scale MHD properties of interplanetary magnetic clouds. Adv. Space Res. 35, 711. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Dasso, S., Nakwacki, M.S., Démoulin, P., Mandrini, C.H.: 2007, Progressive transformation of a flux rope to an ICME. Comparative analysis using the direct and fitted expansion methods. Solar Phys. 244, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Démoulin, P., Zhukov, A.N., Rodriguez, L., Aran, A., Menvielle, M., Poedts, S.: 2009, Linking two consecutive nonmerging magnetic clouds with their solar sources. J. Geophys. Res. 114, A02109. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys. 498, 551. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Domingues, M.O., Mendes, O., da Costa, A.M.: 2005, On wavelet techniques in atmospheric sciences. Adv. Space Res. 35, 831. DOI . ADS .

    Article  ADS  Google Scholar 

  • Du, D., Wang, C., Hu, Q.: 2007, Propagation and evolution of a magnetic cloud from ACE to Ulysses. J. Geophys. Res. 112, A09101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: 2005, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110, A01107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gosling, J.T., Eriksson, S., McComas, D.J., Phan, T.D., Skoug, R.M.: 2007, Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind. J. Geophys. Res. 112, A08106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gulisano, A.M., Dasso, S., Mandrini, C.H., Démoulin, P.: 2007, Estimation of the bias of the Minimum Variance technique in the determination of magnetic clouds global quantities and orientation. Adv. Space Res. 40, 1881. DOI . ADS .

    Article  ADS  Google Scholar 

  • Haggerty, D.K., Roelof, E.C., Smith, C.W., Ness, N.F., Skoug, R.M., Tokar, R.L.: 2000, Two distinct plasma and energetic ion distributions within the June 1998 magnetic cloud. In: Mewaldt, R.A., Jokipii, J.R., Lee, M.A., Möbius, E., Zurbuchen, T.H. (eds.) Acceleration and Transport of Energetic Particles Observed in the Heliosphere, Amer. Inst. Phys. Conf. Ser. 528, 266. DOI . ADS .

    Google Scholar 

  • Hau, L.-N., Sonnerup, B.U.Ö.: 1999, Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data. J. Geophys. Res. 104, 6899. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A.: 2003, A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium. J. Geophys. Res. 108, 1320. DOI . ADS .

    Article  Google Scholar 

  • Hidalgo, M.A.: 2005, Correction to “A study of the expansion and distortion of the cross section of magnetic clouds in the interplanetary medium”. J. Geophys. Res. 110, A03207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q.: 2017, The Grad–Shafranov reconstruction in twenty years: 1996 – 2016. Sci. China. Earth Sci. 60(8), 1466. DOI .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ã.: 2003, Reconstruction of two-dimensional structures in the magnetopause: Method improvements. J. Geophys. Res. 108, 1011. DOI . ADS .

    Article  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2001, Reconstruction of magnetic flux ropes in the solar wind. Geophys. Res. Lett. 28, 467. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Sonnerup, B.U.Ö.: 2002, Reconstruction of magnetic clouds in the solar wind: Orientations and configurations. J. Geophys. Res. 107, 1142. DOI . ADS .

    Article  Google Scholar 

  • Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2003, Double flux-rope magnetic cloud in the solar wind at 1 AU. Geophys. Res. Lett. 30, 38. DOI . ADS .

    Google Scholar 

  • Hu, Q., Smith, C.W., Ness, N.F., Skoug, R.M.: 2004, Multiple flux rope magnetic ejecta in the solar wind. J. Geophys. Res. 109, A03102. DOI . ADS .

    ADS  Google Scholar 

  • Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23, 625. DOI . ADS .

    Article  ADS  Google Scholar 

  • Isavnin, A., Kilpua, E.K.J., Koskinen, H.E.J.: 2011, Grad–Shafranov reconstruction of magnetic clouds: Overview and improvements. Solar Phys. 273, 205. DOI . ADS .

    Article  ADS  Google Scholar 

  • Khrabrov, A.V., Sonnerup, B.U.Ö.: 1998, DeHoffmann–Teller Analysis, ISSI Scien. Rep. Ser. 1, 221. ADS .

    Google Scholar 

  • Klausner, V., Ojeda González, A., Oliveira Domingues, M., Mendes, O., Reinaldo Rodriguez Papa, A.: 2014, Study of local regularities in solar wind data and ground magnetograms. J. Atmos. Solar-Terr. Phys. 112, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Klausner, V., Domingues, M.O., Mendes, O., da Costa, A.M., Papa, A.R.R., González, A.O.: 2016, Latitudinal and longitudinal behavior of the geomagnetic field during a disturbed period: A case study using wavelet techniques. Adv. Space Res. 58, 2148. DOI . ADS .

    Article  ADS  Google Scholar 

  • Klein, L.W., Burlaga, L.F.: 1982, Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 87, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Korth, H., Anderson, B.J., Lyon, J.G., Wiltberger, M.: 2008, Comparison of Birkeland current observations during two magnetic cloud events with MHD simulations. Ann. Geophys. 26, 499. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Behannon, K.W.: 1980, Magnetic field directional discontinuities. I – Minimum variance errors. J. Geophys. Res. 85, 4695. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Burlaga, L.F., Jones, J.A.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95, 11957. DOI . ADS .

    Article  ADS  Google Scholar 

  • Little, M., McSharry, P., Moroz, I., Roberts, S.: 2006, Nonlinear, biophysically-informed speech pathology detection. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing 2006 2. DOI .

    Google Scholar 

  • Liu, Y., Luhmann, J.G., Huttunen, K.E.J., Lin, R.P., Bale, S.D., Russell, C.T., Galvin, A.B.: 2008, Reconstruction of the 2007 May 22 magnetic cloud: How much can we trust the flux-rope geometry of CMEs? Astrophys. J. Lett. 677, L133. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J.: 2014, A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophys. Res. Lett. 41, 769. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lui, A.T.Y., Sibeck, D.G., Phan, T., Angelopoulos, V., McFadden, J., Carlson, C., Larson, D., Bonnell, J., Glassmeier, K.-H., Frey, S.: 2008, Reconstruction of a magnetic flux rope from THEMIS observations. Geophys. Res. Lett. 35, L17S05. DOI . ADS .

    Article  Google Scholar 

  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K.: 2003, Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res. 108, 1239. DOI . ADS .

    Article  Google Scholar 

  • Malamud, B.D., Turcotte, D.L.: 1999, Self-affine time series: I. Generation and analyses. Adv. Geophys. 40, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mallat, S.G.: 1989, Multiresolution approximations and wavelet orthonormal bases of l2(r). Trans. Am. Math. Soc. 315(1), 69. DOI .

    MATH  Google Scholar 

  • Marubashi, K., Lepping, R.P.: 2007, Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 25, 2453. DOI . ADS .

    Article  ADS  Google Scholar 

  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Sci. Rev. 86, 563. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mendes, O., Oliveira Domingues, M., Mendes da Costa, A., Clúa de Gonzalez, A.L.: 2005, Wavelet analysis applied to magnetograms: Singularity detections related to geomagnetic storms. J. Atmos. Solar-Terr. Phys. 67, 1827. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Biernat, H.K., Kiehas, S.A., Nakamura, R., Ivanova, V.V., Khotyaintsev, Y.: 2009, The structure of an earthward propagating magnetic flux rope early in its evolution: comparison of methods. Ann. Geophys. 27(5), 2215. DOI .

    Article  ADS  Google Scholar 

  • Mulligan, T., Russell, C.T., Luhmann, J.G.: 1998, Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere. Geophys. Res. Lett. 25, 2959. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Hidalgo, M.A., Sequeiros, J.: 2005, Magnetic clouds observed at 1 Au during the period 2000 – 2003. Solar Phys. 232, 105. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Prestes, A., Laurindo Sousa, A.N.: 2016, Discussion about the magnetic field dimensionality, invariant axis condition, and Coulomb gauge to solve the Grad–Shafranov equation. Braz. J. Phys. 46, 408. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Calzadilla, A., Lazo, B., Alazo, K., Savio, S.: 2005, Analysis of behavior of solar wind parameters under different IMF conditions using nonlinear dynamics techniques. J. Atmos. Solar-Terr. Phys. 67, 1859. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Mendes, O., Calzadilla, M.A., Domingues, M.O.: 2013, Spatio-temporal entropy analysis of the magnetic field to help magnetic cloud characterization. J. Geophys. Res. 118, 5403. DOI . ADS .

    Article  Google Scholar 

  • Ojeda-González, A., Mendes, O., Menconi, V.E., Domingues, M.O.: 2014a, Daubechies wavelet coefficients: a tool to study interplanetary magnetic field fluctuations. Geofís. Int. 53(2), 101. DOI .

    Google Scholar 

  • Ojeda-González, A., Gonzalez, W.D., Mendes, O., Domingues, M.O., Rosa, R.R.: 2014b, Nonlinear fluctuation analysis for a set of 41 magnetic clouds measured by the Advanced Composition Explorer (ACE) spacecraft. Nonlinear Process. Geophys. 21, 1059. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Domingues, M.O., Mendes, O., Kaibara, M.K., Prestes, A.: 2015, Grad–Shafranov reconstruction: Overview and improvement of the numerical solution used in space physics. Braz. J. Phys. 45, 493. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ojeda-González, A., Mendes, O., Calzadilla, A., Domingues, M.O., Prestes, A., Klausner, V.: 2017, An alternative method for identifying interplanetary magnetic cloud regions. Astrophys. J. 837, 156. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osherovich, V.A., Fainberg, J., Stone, R.G.: 1999, Multi-tube model for interplanetary magnetic clouds. Geophys. Res. Lett. 26, 401. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during Solar Cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Zhang, J.: 2008, Multiple-step geomagnetic storms and their interplanetary drivers. Geophys. Res. Lett. 35, L06S07. DOI . ADS .

    Article  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2006, Space weather: The solar perspective. Living Rev. Solar Phys. 3, 2. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schwenn, R., Marsch, E., Jackson, B.V.: 1993, Book-Review – Physics of the inner heliosphere – Part two – Particles waves and turbulence. Solar Phys. 145, 405. ADS .

    ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23, 1033. DOI . ADS .

    Article  ADS  Google Scholar 

  • Skoug, R.M., Feldman, W.C., Gosling, J.T., McComas, D.J., Reisenfeld, D.B., Smith, C.W., Lepping, R.P., Balogh, A.: 2000, Radial variation of solar wind electrons inside a magnetic cloud observed at 1 and 5 AU. J. Geophys. Res. 105, 27269. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, C.W., L’Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J.: 1998, The ACE magnetic fields experiment. Space Sci. Rev. 86, 613. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Paschmann, G., Phan, T.-D.: 1995, Fluid Aspects of Reconnection at the Magnetopause: In Situ Observations, AGU Monograph Ser. 90, Am. Geophys. Union, Washington, 167. DOI . ADS .

    Google Scholar 

  • Teh, W.-L., Hau, L.-N.: 2004, Evidence for pearl-like magnetic island structures at dawn and dusk side magnetopause. Earth Planets Space 56, 681. ADS .

    Article  ADS  Google Scholar 

  • Teh, W.-L., Hau, L.-N.: 2007, Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985. J. Geophys. Res. 112, A08207. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tian, H., Yao, S., Zong, Q., He, J., Qi, Y.: 2010, Signatures of magnetic reconnection at boundaries of interplanetary small-scale magnetic flux ropes. Astrophys. J. 720, 454. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Geranios, A.: 1999, Double flux rope structure of magnetic clouds? In: Suess, S.T., Gary, G.A., Nerney, S.F. (eds.) American Institute of Physics Conference Series, Amer. Inst. Phys. Conf. Ser. 471, 127. DOI . ADS .

    Google Scholar 

  • Voss, R.F.: 1986, Characterization and measurement of random fractals. Phys. Scr. T 13, 27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Lynch, B.J., Howard, R.A., Li, Y.: 2013, How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Solar Phys. 284, 179. DOI . ADS .

    ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P., Gopalswamy, N.: 2003, Variations of magnetic clouds and CMEs with solar activity cycle. In: Wilson, A. (ed.) Solar Variability as an Input to the Earth’s Environment, ESA SP-535, 429. ADS .

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CNPq (grants 483226/2011-4, 312246/2013-7, 306038/2015-3, 165873/2015, 301441/2013-8), FAPESP (grants 2012/072812-2, 2015/25624-2) and CAPES (grants 1236-83/2012). A. Ojeda-González thanks CAPES and CNPq (grant 141549/2010-6) for his Ph.D. scholarship and CNPq (grant 150595/2013-1, 503790/2012-5) for postdoctoral research support. V. Klausner wishes to thank CNPq for financial support (grants 402386/2015-9 and 165873/2015-9). We also wish to thank the authors of the CME catalog. The CME catalog is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We would also like to thank Christian Möstl and Charles J. Farrugia for the MATLAB program package we used for the Grad–Shafranov reconstruction of magnetic flux ropes. We also wish to thank the anonymous referee and the editors, specially, C.H. Mandrini.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arian Ojeda-González.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojeda-González, A., Klausner, V., Mendes, O. et al. Characterization of the Complex Ejecta Measured In Situ on 19 – 22 March 2001 by Six Different Methods. Sol Phys 292, 160 (2017). https://doi.org/10.1007/s11207-017-1182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1182-4

Keywords

Navigation