Skip to main content
Log in

Solar Type IIIb Radio Bursts as Tracers for Electron Density Fluctuations in the Corona

  • Radio and Space-based Observations
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present an estimation of the electron density modulation index (\(\frac{\delta{N_{\mathrm{e}}}}{N_{\mathrm{e}}}\)) for the first time using solar type IIIb radio burst observations. The mean value of \(\frac{\delta{N_{\mathrm {e}}}}{N_{\mathrm{e}}}\) is calculated to be \({\approx}\,0.006\pm0.002\) over the heliocentric distance range \(r \approx1.6\,\mbox{--}\,2.2~\text{R}_{\odot}\). The estimated \(\frac {\delta{N_{\mathrm{e}}}}{N_{\mathrm{e}}}\) shows a power law dependence on \(r\) with a power law index \({\approx}\,0.31\pm0.10\). The wavenumber (\(k\)) spectrum for the electron density fluctuation \(({\frac{\delta{N_{\mathrm{e}}}}{N_{\mathrm {e}}}})^{2}\) values shows a Kolmogorov-like behavior. Using \(\frac{\delta{N_{\mathrm{e}}}}{N_{\mathrm{e}}}\) and the Kolmogorov turbulence index, we estimated the amplitude of density turbulence [\(C_{n}^{2}{(r)}\)] in the aforementioned range of \(r\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. See http://www.swpc.noaa.gov/ .

  2. The scale beyond which turbulence cascade energy begins to dissipate.

References

  • Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S.J., Robert, P.: 2009, Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103(16), 165003. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., Maksimovic, M.: 2012, Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760, 121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Alissandrakis, C.E., Nindos, A., Patsourakos, S., Kontogeorgos, A., Tsitsipis, P.: 2015, A tiny event producing an interplanetary type III burst. Astron. Astrophys. 582, A52. DOI . ADS .

    Article  ADS  Google Scholar 

  • Allen, C.W.: 1947, Interpretation of electron densities from corona brightness. Mon. Not. Roy. Astron. Soc. 107, 426. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aubier, M., Leblanc, Y., Boischot, A.: 1971, Observations of the quiet Sun at decameter wavelengths – Effects of scattering on the brightness distribution. Astron. Astrophys. 12, 435. ADS .

    ADS  Google Scholar 

  • Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S., Reme, H.: 2005, Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94(21), 215002. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bastian, T.S.: 1994, Angular scattering of solar radio emission by coronal turbulence. Astrophys. J. 426, 774. DOI . ADS .

    Article  ADS  Google Scholar 

  • Baumbach, S.: 1937, Strahlung, ergiebigkeit und elektronendichte der sonnenkorona. Astron. Nachr. 263(6), 121. DOI .

    Article  ADS  Google Scholar 

  • Bavassano, B., Bruno, R.: 1995, Density fluctuations and turbulent Mach numbers in the inner solar wind. J. Geophys. Res. 100, 9475. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bisoi, S.K., Janardhan, P., Ingale, M., Subramanian, P., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2014, A study of density modulation index in the inner heliospheric solar wind during Solar Cycle 23. Astrophys. J. 795, 69. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cairns, I.H., Lobzin, V.V., Warmuth, A., Li, B., Robinson, P.A., Mann, G.: 2009, Direct radio probing and interpretation of the Sun’s plasma density profile. Astrophys. J. Lett. 706, L265. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chen, C.H.K., Leung, L., Boldyrev, S., Maruca, B.A., Bale, S.D.: 2014, Ion-scale spectral break of solar wind turbulence at high and low beta. Geophys. Res. Lett. 41(22), 8081. DOI .

    Article  ADS  Google Scholar 

  • Coles, W., Liu, W., Harmon, J., Martin, C.: 1991, The solar wind density spectrum near the sun: Results from voyager radio measurements. J. Geophys. Res. Space Phys. 96(A2), 1745.

    Article  ADS  Google Scholar 

  • Cranmer, S.R.: 2007, Turbulence in the solar corona. In: Shaikh, D., Zank, G.P. (eds.) Turbulence and Nonlinear Processes in Astrophysical Plasmas, American Institute of Physics Conference Series 932, 327. DOI . ADS .

    Google Scholar 

  • de La Noe, J., Boischot, A.: 1972, The type III B burst. Astron. Astrophys. 20, 55. ADS .

    ADS  Google Scholar 

  • Dryer, M., Maxwell, A.: 1979, Radio data and a theoretical model for the fast-mode MHD shock wave generated by the solar flare of 1973 September 5, 18:26 UT. Astrophys. J. 231, 945. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dulk, G.A., McLean, D.J.: 1978, Coronal magnetic fields. Solar Phys. 57, 279. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ebenezer, E., Ramesh, R., Subramanian, K.R., SundaraRajan, M.S., Sastry, C.V.: 2001, A new digital spectrograph for observations of radio burst emission from the Sun. Astron. Astrophys. 367, 1112. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ebenezer, E., Subramanian, K.R., Ramesh, R., Sundararajan, M.S., Kathiravan, C.: 2007, Gauribidanur Radio Array Solar Spectrograph (GRASS). Bull. Astron. Soc. India 35, 111. ADS .

    ADS  Google Scholar 

  • Ellis, G.R.A., McCulloch, P.M.: 1967, Frequency splitting of solar radio bursts. Aust. J. Phys. 20, 583. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ginzburg, V.L., Zhelezniakov, V.V.: 1958, On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Soviet Astron. 2, 653. ADS .

    ADS  Google Scholar 

  • Goldstein, M.L., Roberts, D., Matthaeus, W.: 1995, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33(1), 283.

    Article  ADS  Google Scholar 

  • Hariharan, K., Mugundhan, V., Ramesh, R.: In preparation. Digital spectrometers for solar radio astronomy.

  • Hariharan, K., Ramesh, R., Kathiravan, C., Abhilash, H.N., Rajalingam, M.: 2016, High dynamic range observations of solar coronal transients at low radio frequencies with a spectro-correlator. Astrophys. J. Suppl. 222, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Huddleston, D.E., Woo, R., Neugebauer, M.: 1995, Density fluctuations in different types of solar wind flow at 1 AU and comparison with results from Doppler scintillation measurement near the Sun. J. Geophys. Res. 100, 19951. DOI . ADS .

    Article  ADS  Google Scholar 

  • Imamura, T., Noguchi, K., Nabatov, A., Oyama, K.-I., Yamamoto, Z., Tokumaru, M.: 2005, Phase scintillation observation during coronal sounding experiments with NOZOMI spacecraft. Astron. Astrophys. 439, 1165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kathiravan, C., Ramesh, R.: 2004, Estimation of the three-dimensional space speed of a coronal mass ejection using metric radio data. Astrophys. J. 610, 532. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kathiravan, C., Ramesh, R., Barve, I.V., Rajalingam, M.: 2011, Radio observations of the solar corona during an eclipse. Astrophys. J. 730, 91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kishore, P., Kathiravan, C., Ramesh, R., Rajalingam, M., Barve, I.V.: 2014, Gauribidanur low-frequency solar spectrograph. Solar Phys. 289, 3995. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kontar, E.P.: 2001, Dynamics of electron beams in the solar corona plasma with density fluctuations. Astron. Astrophys. 375, 629. DOI . ADS .

    Article  ADS  Google Scholar 

  • Krishan, V., Subramanian, K.R., Sastry, C.V.: 1980, Observations and interpretation of solar decameter type IIIb radio bursts. Solar Phys. 66, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, B., Cairns, I.H., Robinson, P.A.: 2011a, Effects of spatial variations in coronal electron and ion temperatures on type III bursts. II. Variations in ion temperature. Astrophys. J. 730, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, B., Cairns, I.H., Robinson, P.A.: 2011b, Effects of spatial variations in coronal temperatures on type III bursts. I. Variations in electron temperature. Astrophys. J. 730, 20. DOI . ADS .

    Article  ADS  Google Scholar 

  • Li, B., Cairns, I.H., Robinson, P.A.: 2012, Frequency fine structures of type III bursts due to localized medium-scale density structures along paths of type III beams. Solar Phys. 279, 173. DOI . ADS .

    Article  ADS  Google Scholar 

  • Loi, S.T., Cairns, I.H., Li, B.: 2014, Production of fine structures in type III solar radio bursts due to turbulent density profiles. Astrophys. J. 790, 67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Marsch, E.: 1991, Turbulence in the solar wind. In: Klare, G. (ed.) Reviews in Modern Astronomy, Reviews in Modern Astronomy 4, 145. DOI . ADS .

    Chapter  Google Scholar 

  • Maxwell, A., Thompson, A.R.: 1962, Spectral observations of solar radio bursts. II. Slow-drift bursts and coronal streamers. Astrophys. J. 135, 138. DOI . ADS .

    Article  ADS  Google Scholar 

  • Melnik, V.N., Rucker, H.O., Konovalenko, A.A., Dorovskyy, V.V., Tan, S.: 2011, Decameter IIIb-III pairs. In: EPSC-DPS Joint Meeting 2011, 796. ADS .

    Google Scholar 

  • Melnik, V., Rucker, H., Konovalenko, A., Abranin, E., Dorovskyy, V., Boiko, A., Lecacheux, A.: 2009, Observation of powerful solar type III bursts at frequencies 10 – 30 MHz. In: European Planetary Science Congress 2009, 421. ADS .

    Google Scholar 

  • Mercier, C., Chambe, G.: 2015, Electron density and temperature in the solar corona from multifrequency radio imaging. Astron. Astrophys. 583, A101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mercier, C., Subramanian, P., Kerdraon, A., Pick, M., Ananthakrishnan, S., Janardhan, P.: 2006, Combining visibilities from the giant meterwave radio telescope and the Nancay radio heliograph. High dynamic range snapshot images of the solar corona at 327 MHz. Astron. Astrophys. 447, 1189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mercier, C., Subramanian, P., Chambe, G., Janardhan, P.: 2015, The structure of solar radio noise storms. Astron. Astrophys. 576, A136. DOI . ADS .

    Article  ADS  Google Scholar 

  • Morosan, D.E., Gallagher, P.T., Zucca, P., Fallows, R., Carley, E., Mann, G., Bisi, M., Kerdraon, A., Konovalenko, A., MacKinnon, A., et al.: 2014, LOFAR tied-array imaging of type III solar radio bursts. Astron. Astrophys. 568, A67.

    Article  Google Scholar 

  • Morosan, D., Gallagher, P., Zucca, P., O’flannagain, A., Fallows, R., Reid, H., Magdalenić, J., Mann, G., Bisi, M., Kerdraon, A., et al.: 2015, LOFAR tied-array imaging and spectroscopy of solar S bursts. Astron. Astrophys. 580, A65.

    Article  Google Scholar 

  • Mugundhan, V., Ramesh, R., Barve, I.V., Kathiravan, C., Gireesh, G.V.S., Kharb, P., Misra, A.: 2016, Low-frequency radio observations of the solar corona with arcminute angular resolution: Implications for coronal turbulence and weak energy releases. Astrophys. J. 831, 154. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mullan, D.J.: 1990, Sources of the solar wind – What are the smallest-scale structures? Astron. Astrophys. 232, 520. ADS .

    ADS  Google Scholar 

  • Nindos, A., Alissandrakis, C.E., Hillaris, A., Preka-Papadema, P.: 2011, On the relationship of shock waves to flares and coronal mass ejections. Astron. Astrophys. 531, A31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pohjolainen, S., Pomoell, J., Vainio, R.: 2008, CME liftoff with high-frequency fragmented type II burst emission. Astron. Astrophys. 490, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R.: 2000, Low frequency radio emission from the ‘quiet Sun’. J. Astrophys. Astron. 21, 237. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R.: 2011, Low frequency solar radio astronomy at the Indian Institute of Astrophysics (IIA). In: Astronomical Society of India Conference Series, Astronomical Society of India Conference Series 2. ADS .

    Google Scholar 

  • Ramesh, R., Ebenezer, E.: 2001, Decameter wavelength observations of an absorption burst from the Sun and its association with an X2.0/3B flare and the onset of a “Halo” coronal mass ejection. Astrophys. J. Lett. 558, L141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Sastry, C.V.: 2000, Radio observations of a coronal mass ejection induced depletion in the outer solar corona. Astron. Astrophys. 358, 749. ADS .

    ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Narayanan, A.S.: 2011, Low-frequency observations of polarized emission from long-lived non-thermal radio sources in the solar corona. Astrophys. J. 734, 39. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Sastry, C.V.: 2001, Low-frequency radio observations of the angular broadening of the Crab nebula due to a coronal mass ejection. Astrophys. J. Lett. 548, L229. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Sastry, C.V.: 2010, Estimation of magnetic field in the solar coronal streamers through low frequency radio observations. Astrophys. J. 711, 1029. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Subramanian, K.R., Sastry, C.V.: 1999, Eclipse observations of compact sources in the outer solar corona. Solar Phys. 185, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Subramanian, K.R., Sastry, C.V.: 2000, Estimation of the altitude and electron density of a discrete source in the outer solar corona through low frequency radio observations. Astrophys. Lett. Commun. 40, 93. ADS .

    ADS  Google Scholar 

  • Ramesh, R., Narayanan, A.S., Kathiravan, C., Sastry, C.V., Shankar, N.U.: 2005, An estimation of the plasma parameters in the solar corona using quasi-periodic metric type III radio burst emission. Astron. Astrophys. 431, 353. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Nataraj, H.S., Kathiravan, C., Sastry, C.V.: 2006, The equatorial background solar corona during solar minimum. Astrophys. J. 648, 707. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Barve, I.V., Beeharry, G.K., Rajasekara, G.N.: 2010a, Radio observations of weak energy releases in the solar corona. Astrophys. J. Lett. 719, L41. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Kartha, S.S., Gopalswamy, N.: 2010b, Radioheliograph observations of metric type II bursts and the kinematics of coronal mass ejections. Astrophys. J. 712, 188. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Kathiravan, C., Barve, I.V., Rajalingam, M.: 2012a, High angular resolution radio observations of a coronal mass ejection source region at low frequencies during a solar eclipse. Astrophys. J. 744, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Lakshmi, M.A., Kathiravan, C., Gopalswamy, N., Umapathy, S.: 2012b, The location of solar metric type II radio bursts with respect to the associated coronal mass ejections. Astrophys. J. 752, 107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ramesh, R., Sasikumar Raja, K., Kathiravan, C., Narayanan, A.S.: 2013, Low-frequency radio observations of picoflare category energy releases in the solar atmosphere. Astrophys. J. 762, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Kontar, E.P.: 2010, Solar wind density turbulence and solar flare electron transport from the Sun to the Earth. Astrophys. J. 721, 864. DOI . ADS .

    Article  ADS  Google Scholar 

  • Reid, H.A.S., Ratcliffe, H.: 2014, A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ramesh, R.: 2013, Low-frequency observations of transient quasi-periodic radio emission from the solar atmosphere. Astrophys. J. 775, 38. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sasikumar Raja, K., Ingale, M., Ramesh, R., Subramanian, P., Manoharan, P.K., Janardhan, P.: 2016, Amplitude of solar wind density turbulence from 10 to \(45~\mbox{R}_{{\odot}}\). J. Geophys. Res. Space Phys. 121, 11. DOI . ADS .

    Google Scholar 

  • Sastry, C.V.: 1994, Observations of the continuum radio emission from the undisturbed Sun at a wavelength of 8.7 meters. Solar Phys. 150, 285. DOI . ADS .

    Article  ADS  Google Scholar 

  • Smith, R.A., de La Noe, J.: 1976, Theory of type IIIb solar radio bursts. Astrophys. J. 207, 605. DOI . ADS .

    Article  ADS  Google Scholar 

  • Spangler, S.R.: 2002, The amplitude of magnetohydrodynamic turbulence in the inner solar wind. Astrophys. J. 576, 997. DOI . ADS .

    Article  ADS  Google Scholar 

  • Stewart, R.T.: 1976, Source heights of metre wavelength bursts of spectral types I and III. Solar Phys. 50, 437. DOI . ADS .

    Article  ADS  Google Scholar 

  • Subramanian, K.R.: 2004, Brightness temperature and size of the quiet Sun at 34.5 MHz. Astron. Astrophys. 426, 329. DOI . ADS .

    Article  ADS  Google Scholar 

  • Subramanian, P., Cairns, I.: 2011, Constraints on coronal turbulence models from source sizes of noise storms at 327 MHz. J. Geophys. Res. Space Phys. 116(A3), A03104. DOI .

    ADS  Google Scholar 

  • Suresh, A., Sharma, R., Oberoi, D., Das, S.B., Pankratius, V., Timar, B., Lonsdale, C.J., Bowman, J.D., et al.: 2017, Wavelet-based characterization of small-scale solar emission features at low radio frequencies. Astrophys. J. 843, 19. DOI . ADS .

    Article  ADS  Google Scholar 

  • Takakura, T., Yousef, S.: 1975, Type IIIb radio bursts – 80 MHz source position and theoretical model. Solar Phys. 40, 421. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thejappa, G., Kundu, M.R.: 1994, The effects of large- and small-scale density structures on the radio from coronal streamers. Solar Phys. 149, 31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thejappa, G., Zlobec, P., MacDowall, R.J.: 2003, Polarization and fragmentation of solar type II radio bursts. Astrophys. J. 592, 1234. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K.: 2012, Long-term evolution in the global distribution of solar wind speed and density fluctuations during 1997 – 2009. J. Geophys. Res. Space Phys. 117, A06108. DOI . ADS .

    ADS  Google Scholar 

  • Tun Beltran, S.D., Cutchin, S., White, S.: 2015, A new look at type-III bursts and their use as coronal diagnostics. Solar Phys. 290, 2423. DOI . ADS .

    Article  ADS  Google Scholar 

  • Woo, R., Armstrong, J.W.: 1979, Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind. J. Geophys. Res. Space Phys. 84(A12), 7288. DOI .

    Article  ADS  Google Scholar 

  • Woo, R., Armstrong, J.W., Bird, M.K., Patzold, M.: 1995, Variation of fractional electron density fluctuations inside \(40~\mbox{R}_{0}\) observed by ULYSSES ranging measurements. Geophys. Res. Lett. 22, 329. DOI . ADS .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Gauribidanur Observatory for their help in observations, and maintenance of the antenna, receiver systems there. VM would like to thank Dr. C. Kathiravan and Ms. Anshu Kumari for their contributions towards thoroughly proof-reading the manuscript and providing valuable suggestions. We acknowledge the referee for his/her comments and suggestions which helped us in bringing out the results more clearly.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Mugundhan, K. Hariharan or R. Ramesh.

Ethics declarations

Disclosure of Potential Conflicts of interest

We declare that there are no conflicts of interest for the work presented here.

Additional information

Combined Radio and Space-based Solar Observations: From Techniques to New Results

Guest Editors: Eduard Kontar and Alexander Nindos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugundhan, V., Hariharan, K. & Ramesh, R. Solar Type IIIb Radio Bursts as Tracers for Electron Density Fluctuations in the Corona. Sol Phys 292, 155 (2017). https://doi.org/10.1007/s11207-017-1181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1181-5

Keywords

Navigation