Skip to main content
Log in

The effects of large- and small-scale density structures on the radio emission from coronal streamers

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The radio observations of the coronal streamers obtained using Clark Lake radioheliograph at 73.8, 50.0, and 38.5 MHz during a period of minimum activity in September 1986 are presented. Streamers appear to correlate with two prominent disk sources whose intensities fluctuated randomly. The variations in half-power diameter of the radio Sun are found to correspond with the variations in the white-light extents of the coronal streamers. It appears that the shape of the radio Sun is not a function of the phase of the solar cycle; instead it depends on the relative positions of the streamers in the corona. The observed peak brightness temperatures,T B , of the streamers are found to be very low, being ≃6 × 104 K.

We compute the brightness temperature distribution along the equator by tracing the rays in the coronal plasma. The rays are deflected away by the streamers before reaching the critical density level, whereas they penetrate deeper into the coronal hole for small angles between the line of sight and the streamer axis. As a consequence, it is found that the streamers and coronal holes appear in the calculated equatorial brightness distribution as irregular brightness depressions and enhancements, respectively. The fine structures are found to disappear when the scattering due to small-scale density inhomogeneities is included in the ray-tracing calculations. The required relative level of density fluctuations, ∈1 = ΔN/N, is found to be greater than 12% to reduce the peak brightness temperature from 106 K to 6 × 104 K for all the three frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alissandrakis, C. E., Lantos, P., and Nicolaidis, E.: 1985,Solar Phys. 97, 267.

    Google Scholar 

  • Avignon, Y. and Malinge, A. M.: 1961,Compt. Rend. 255, 2859.

    Google Scholar 

  • Axisa, F., Avignon, Y., Martres, M. J., Pick, M., and Simon, P.: 1971,Solar Phys. 19, 110.

    Google Scholar 

  • Dulk, G. A. and Sheridan, K. V.: 1974,Solar Phys. 36, 191.

    Google Scholar 

  • Dulk, G. A., Sheridan, K. V., Smerd, S. F., and Withbroe, G. L.: 1977,Solar Phys. 52, 349.

    Google Scholar 

  • Erickson, W. C., Mahoney, M. J., and Erb, K.: 1983,Astrophys. J. Suppl. 50, 403.

    Google Scholar 

  • Erickson, W. C., Gergely, T. E., Kundu, M. R., and Mahoney, M. J.: 1977,Solar Phys. 54, 57.

    Google Scholar 

  • Hoang, S. and Steinberg, J. L.: 1977,Astron. Astrophys. 58, 287.

    Google Scholar 

  • Kundu, M. R.: 1987, in R. C. Altrock (ed.),Solar and Stellar Structure and Dynamics, A Festschrift in Honor of Dr John W. Evans, National Solar Observatory, Sacramento Peak, Sunspot, New Mexico, p. 192.

    Google Scholar 

  • Kundu, M. R., Gergely, T. E., and Erickson, W. C.: 1977,Solar Phys. 53, 489.

    Google Scholar 

  • Kundu, M. R., Gergely, T. E., Turner, P., and Howard, R.: 1983,Astrophys. J. 303, 436.

    Google Scholar 

  • Kundu, M. R., Gergely, T. E., Schmahl, E. J., Szabo, A., Loicaono, R., Wang, Z., and Howard, R. A.: 1987,Solar Phys. 108, 113.

    Google Scholar 

  • Kundu, M. R., Schmahl, E. J., Gopalswamy, N., and White, S. M.: 1989,Adv. Space Res. 9, 41.

    Google Scholar 

  • Lantos, P., Alissandrakis, C. E., Gergely, T., and Kundu, M. R.: 1987,Solar Phys. 112, 325.

    Google Scholar 

  • Leblanc, Y.: 1970,Astron. Astrophys. 4, 315.

    Google Scholar 

  • Leblanc, Y. and Le Squeren, A. M.: 1969,Astron. Astrophys. 1, 329.

    Google Scholar 

  • Moutot, M. and Boischot, A.: 1961,Ann. Astron. 24, 271.

    Google Scholar 

  • Newkirk, G.: 1961,Astrophys. J. 133, 982.

    Google Scholar 

  • Pawsey, J. L. and Bracewell, R. N.: 1955,Radio Astronomy, Oxford University Press, Oxford, p. 83.

    Google Scholar 

  • Riddle, A. C.: 1974a,Solar Phys. 35, 153.

    Google Scholar 

  • Riddle, A. C.: 1974b,Solar Phys. 36, 375.

    Google Scholar 

  • Sastry, Ch. V., Shevgaonkar, R. K., and Ramanuja, M. N.: 1983,Solar Phys. 87, 391.

    Google Scholar 

  • Sastry, Ch. V., Dwarakanath, K. S., Shevgaonkar, R. K., and Krishan, V.: 1981,Solar Phys. 73, 363.

    Google Scholar 

  • Sheridan, K. V.: 1970,Proc. Astron. Soc. Australia 1, 304.

    Google Scholar 

  • Sheridan, K. V.: 1978,Proc. Astron. Soc. Australia 3, 185.

    Google Scholar 

  • Sheridan, K. V. and McLean, D. J.: 1985, in D. J. McLean and N. R. Labrum (eds.),Solar Radiophysics, Cambridge University Press, New York.

    Google Scholar 

  • Steinberg, J. L., Aubier-Girand, M., Leblanc, Y., and Boischot, A.: 1971,Astron. Astrophys. 10, 362.

    Google Scholar 

  • Thejappa, G. and Kundu, M. R.: 1992,Solar Phys. 140, 19 (Paper I).

    Google Scholar 

  • Wang, Z., Schmahl, E. J., and Kundu, M. R.: 1987,Solar Phys. 111, 419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Indian Institute of Astrophysics, Bangalore 560034, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thejappa, G., Kundu, M.R. The effects of large- and small-scale density structures on the radio emission from coronal streamers. Sol Phys 149, 31–49 (1994). https://doi.org/10.1007/BF00645176

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645176

Keywords

Navigation