Skip to main content
Log in

A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies \({\approx}\, 10^{4}\) times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. See phl.upr.edu/projects/habitable-exoplanets-catalog/data .

References

  • Aarnio, A.N., Matt, S.P., Stassun, K.G.: 2012, Mass loss in pre-main-sequence stars via coronal mass ejections and implications for angular momentum loss. Astrophys. J. 760, 9. DOI . ADS .

    Article  ADS  Google Scholar 

  • Airapetian, V.S., Glocer, A., Khazanov, G.V., Loyd, R.O.P., France, K., Sojka, J., Danchi, W.C., Liemohn, M.W.: 2017, How hospitable are space weather affected habitable zones? The role of ion escape. Astrophys. J. Lett. 836, L3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Al-Haddad, N., Nieves-Chinchilla, T., Savani, N.P., Möstl, C., Marubashi, K., Hidalgo, M.A., Roussev, I.I., Poedts, S., Farrugia, C.J.: 2013, Magnetic field configuration models and reconstruction methods for interplanetary coronal mass ejections. Solar Phys. 284, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Andrews, M.D.: 2003, A search for CMEs associated with big flares. Solar Phys. 218, 261. DOI . ADS .

    Article  ADS  Google Scholar 

  • Anglada-Escudé, G., Amado, P.J., Barnes, J., Berdiñas, Z.M., Butler, R.P., Coleman, G.A.L., de La Cueva, I., Dreizler, S., Endl, M., Giesers, B., Jeffers, S.V., Jenkins, J.S., Jones, H.R.A., Kiraga, M., Kürster, M., López-González, M.J., Marvin, C.J., Morales, N., Morin, J., Nelson, R.P., Ortiz, J.L., Ofir, A., Paardekooper, S.-J., Reiners, A., Rodríguez, E., Rodríguez-López, C., Sarmiento, L.F., Strachan, J.P., Tsapras, Y., Tuomi, M., Zechmeister, M.: 2016, A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437. DOI . ADS .

    Article  ADS  Google Scholar 

  • Armstrong, D.J., Pugh, C.E., Broomhall, A.-M., Brown, D.J.A., Lund, M.N., Osborn, H.P., Pollacco, D.L.: 2016, The host stars of Kepler’s habitable exoplanets: superflares, rotation and activity. Mon. Not. Roy. Astron. Soc. 455, 3110. DOI . ADS .

    Article  ADS  Google Scholar 

  • Aulanier, G., Démoulin, P., Schrijver, C.J., Janvier, M., Pariat, E., Schmieder, B.: 2013, The standard flare model in three dimensions. II. Upper limit on solar flare energy. Astron. Astrophys. 549, A66. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bastian, T.S., Pick, M., Kerdraon, A., Maia, D., Vourlidas, A.: 2001, The coronal mass ejection of 1998 April 20: direct imaging at radio wavelengths. Astrophys. J. Lett. 558, L65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Berger, M.A.: 1984, Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30, 79. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bosman, E., Bothmer, V., Nisticò, G., Vourlidas, A., Howard, R.A., Davies, J.A.: 2012, Three-dimensional properties of coronal mass ejections from STEREO/SECCHI observations. Solar Phys. 281, 167. DOI . ADS .

    ADS  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1998, The structure and origin of magnetic clouds in the solar wind. Ann. Geophys. 16, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Chapman, S., Ferraro, V.C.A.: 1930, A new theory of magnetic storms. Nature 126, 129. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Chintzoglou, G., Patsourakos, S., Vourlidas, A.: 2015, Formation of magnetic flux ropes during a confined flaring well before the onset of a pair of major coronal mass ejections. Astrophys. J. 809, 34. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cid, C., Hidalgo, M.A., Nieves-Chinchilla, T., Sequeiros, J., Viñas, A.F.: 2002, Plasma and magnetic field inside magnetic clouds: a global study. Solar Phys. 207, 187. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cliver, E.W., Tylka, A.J., Dietrich, W.F., Ling, A.G.: 2014, On a solar origin for the cosmogenic nuclide event of 775 A.D. Astrophys. J. 781, 32. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cunha, D., Correia, A.C.M., Laskar, J.: 2015, Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction. Int. J. Astrobiol. 14, 233. DOI . ADS .

    Article  Google Scholar 

  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L.: 2006, A new model-independent method to compute magnetic helicity in magnetic clouds. Astron. Astrophys. 455, 349. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Davenport, J.R.A., Kipping, D.M., Sasselov, D., Matthews, J.M., Cameron, C.: 2016, MOST observations of our nearest neighbor: flares on Proxima Centauri. Astrophys. J. Lett. 829, L31. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Dasso, S.: 2009, Causes and consequences of magnetic cloud expansion. Astron. Astrophys. 498, 551. DOI . ADS .

    Article  ADS  MATH  Google Scholar 

  • Démoulin, P., Janvier, M., Dasso, S.: 2016, Magnetic flux and helicity of magnetic clouds. Solar Phys. 291, 531. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A.: 2002, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978. Astron. Astrophys. 382, 650. DOI . ADS .

    Article  ADS  Google Scholar 

  • DeVore, C.R.: 2000, Magnetic helicity generation by solar differential rotation. Astrophys. J. 539, 944. DOI . ADS .

    Article  ADS  Google Scholar 

  • Donati, J.-F., Morin, J., Petit, P., Delfosse, X., Forveille, T., Aurière, M., Cabanac, R., Dintrans, B., Fares, R., Gastine, T., Jardine, M.M., Lignières, F., Paletou, F., Ramirez Velez, J.C., Théado, S.: 2008, Large-scale magnetic topologies of early M dwarfs. Mon. Not. Roy. Astron. Soc. 390, 545. DOI . ADS .

    Article  ADS  Google Scholar 

  • Dong, C., Lingam, M., Ma, Y., Cohen, O.: 2017, Is Proxima Centauri b habitable? – A study of atmospheric loss. arXiv . ADS .

  • Drake, J.J., Cohen, O., Yashiro, S., Gopalswamy, N.: 2013, Implications of mass and energy loss due to coronal mass ejections on magnetically active stars. Astrophys. J. 764, 170. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forbes, T.G.: 2000, A review on the genesis of coronal mass ejections. J. Geophys. Res. 105, 23153. DOI . ADS .

    Article  ADS  Google Scholar 

  • Forsyth, R.J., Bothmer, V., Cid, C., Crooker, N.U., Horbury, T.S., Kecskemety, K., Klecker, B., Linker, J.A., Odstrcil, D., Reiner, M.J., Richardson, I.G., Rodriguez-Pacheco, J., Schmidt, J.M., Wimmer-Schweingruber, R.F.: 2006, ICMEs in the inner heliosphere: origin, evolution and propagation effects. Report of working group G. Space Sci. Rev. 123, 383. DOI . ADS .

    Article  ADS  Google Scholar 

  • Garraffo, C., Drake, J.J., Cohen, O.: 2016, The space weather of Proxima Centauri b. Astrophys. J. Lett. 833, L4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gary, G.A., Moore, R.L.: 2004, Eruption of a multiple-turn helical magnetic flux tube in a large flare: evidence for external and internal reconnection that fits the breakout model of solar magnetic eruptions. Astrophys. J. 611, 545. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Tziotziou, K., Raouafi, N.-E.: 2012, Magnetic energy and helicity budgets in the active-region solar corona. II. Nonlinear force-free approximation. Astrophys. J. 759, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M., Pevtsov, A.A., Bernasconi, P.N., Kuzanyan, K.M.: 2009, Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23. Astrophys. J. Lett. 705, L48. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gibson, S.E., Fan, Y.: 2008, Partially ejected flux ropes: implications for interplanetary coronal mass ejections. J. Geophys. Res. Space Phys. 113, A09103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gladman, B., Quinn, D.D., Nicholson, P., Rand, R.: 1996, Synchronous locking of tidally evolving satellites. Icarus 122, 166. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gold, T., Hoyle, F.: 1960, On the origin of solar flares. Mon. Not. Roy. Astron. Soc. 120, 89. DOI . ADS .

    Article  ADS  Google Scholar 

  • Good, S.W., Forsyth, R.J., Raines, J.M., Gershman, D.J., Slavin, J.A., Zurbuchen, T.H.: 2015, Radial evolution of a magnetic cloud: MESSENGER, STEREO, and Venus Express observations. Astrophys. J. 807, 177. DOI . ADS .

    Article  ADS  Google Scholar 

  • Green, L.M., López fuentes, M.C., Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Culhane, J.L.: 2002, The magnetic helicity budget of a CME-prolific active region. Solar Phys. 208, 43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grießmeier, J.-M., Stadelmann, A., Penz, T., Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Motschmann, U., Biernat, H.K., Weiss, W.W.: 2004, The effect of tidal locking on the magnetospheric and atmospheric evolution of “Hot Jupiters”. Astron. Astrophys. 425, 753. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grießmeier, J.-M., Stadelmann, A., Motschmann, U., Belisheva, N.K., Lammer, H., Biernat, H.K.: 2005, Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology 5, 587. DOI . ADS .

    Article  ADS  Google Scholar 

  • Guo, Y., Ding, M.D., Cheng, X., Zhao, J., Pariat, E.: 2013, Twist accumulation and topology structure of a solar magnetic flux rope. Astrophys. J. 779, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hariharan, K., Ramesh, R., Kathiravan, C., Wang, T.J.: 2016, Simultaneous near-sun observations of a moving type IV radio burst and the associated white-light coronal mass ejection. Solar Phys. 291, 1405. DOI . ADS .

    Article  ADS  Google Scholar 

  • Harra, L.K., Schrijver, C.J., Janvier, M., Toriumi, S., Hudson, H., Matthews, S., Woods, M.M., Hara, H., Guedel, M., Kowalski, A., Osten, R., Kusano, K., Lueftinger, T.: 2016, The characteristics of solar X-class flares and CMEs: a paradigm for stellar superflares and eruptions? Solar Phys. 291, 1761. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hidalgo, M.A., Cid, C., Medina, J., Viñas, A.F.: 2000, A new model for the topology of magnetic clouds in the solar wind. Solar Phys. 194, 165. DOI . ADS .

    Article  ADS  Google Scholar 

  • Houdebine, E.R., Foing, B.H., Rodono, M.: 1990, Dynamics of flares on late-type dMe stars. I – Flare mass ejections and stellar evolution. Astron. Astrophys. 238, 249. ADS .

    ADS  Google Scholar 

  • Howard, T.A., Stovall, K., Dowell, J., Taylor, G.B., White, S.M.: 2016, Measuring the magnetic field of coronal mass ejections near the Sun using pulsars. Astrophys. J. 831, 208. DOI . ADS .

    Article  ADS  Google Scholar 

  • Hu, Q., Qiu, J., Dasgupta, B., Khare, A., Webb, G.M.: 2014, Structures of interplanetary magnetic flux ropes and comparison with their solar sources. Astrophys. J. 793, 53. DOI . ADS .

    Article  ADS  Google Scholar 

  • Isavnin, A., Vourlidas, A., Kilpua, E.K.J.: 2014, Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Solar Phys. 289, 2141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jakosky, B.M., Grebowsky, J.M., Luhmann, J.G., Connerney, J., Eparvier, F., Ergun, R., Halekas, J., Larson, D., Mahaffy, P., McFadden, J., Mitchell, D.F., Schneider, N., Zurek, R., Bougher, S., Brain, D., Ma, Y.J., Mazelle, C., Andersson, L., Andrews, D., Baird, D., Baker, D., Bell, J.M., Benna, M., Chaffin, M., Chamberlin, P., Chaufray, Y.-Y., Clarke, J., Collinson, G., Combi, M., Crary, F., Cravens, T., Crismani, M., Curry, S., Curtis, D., Deighan, J., Delory, G., Dewey, R., DiBraccio, G., Dong, C., Dong, Y., Dunn, P., Elrod, M., England, S., Eriksson, A., Espley, J., Evans, S., Fang, X., Fillingim, M., Fortier, K., Fowler, C.M., Fox, J., Gröller, H., Guzewich, S., Hara, T., Harada, Y., Holsclaw, G., Jain, S.K., Jolitz, R., Leblanc, F., Lee, C.O., Lee, Y., Lefevre, F., Lillis, R., Livi, R., Lo, D., Mayyasi, M., McClintock, W., McEnulty, T., Modolo, R., Montmessin, F., Morooka, M., Nagy, A., Olsen, K., Peterson, W., Rahmati, A., Ruhunusiri, S., Russell, C.T., Sakai, S., Sauvaud, J.-A., Seki, K., Steckiewicz, M., Stevens, M., Stewart, A.I.F., Stiepen, A., Stone, S., Tenishev, V., Thiemann, E., Tolson, R., Toublanc, D., Vogt, M., Weber, T., Withers, P., Woods, T., Yelle, R.: 2015, MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350, 0210. DOI . ADS .

    Article  Google Scholar 

  • Jensen, E.A., Russell, C.T.: 2008, Faraday rotation observations of CMEs. Geophys. Res. Lett. 35, L02103. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kane, S.R., Hill, M.L., Kasting, J.F., Kopparapu, R.K., Quintana, E.V., Barclay, T., Batalha, N.M., Borucki, W.J., Ciardi, D.R., Haghighipour, N., Hinkel, N.R., Kaltenegger, L., Selsis, F., Torres, G.: 2016, A catalog of Kepler habitable zone exoplanet candidates. Astrophys. J. 830, 1. DOI . ADS .

    Article  ADS  Google Scholar 

  • Karoff, C., Knudsen, M.F., De Cat, P., Bonanno, A., Fogtmann-Schulz, A., Fu, J., Frasca, A., Inceoglu, F., Olsen, J., Zhang, Y., Hou, Y., Wang, Y., Shi, J., Zhang, W.: 2016, Observational evidence for enhanced magnetic activity of superflare stars. Nat. Commun. 7, 11058. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kasting, J.F., Whitmire, D.P., Reynolds, R.T.: 1993, Habitable zones around main sequence stars. Icarus 101, 108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kataoka, R., Ebisuzaki, T., Kusano, K., Shiota, D., Inoue, S., Yamamoto, T.T., Tokumaru, M.: 2009, Three-dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection. J. Geophys. Res. Space Phys. 114, A10102. DOI . ADS .

    ADS  Google Scholar 

  • Kay, C., Opher, M., Evans, R.M.: 2013, Forecasting a Coronal Mass Ejection’s Altered Trajectory: ForeCAT. Astrophys. J. 775, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kay, C., Opher, M., Kornbleuth, M.: 2016, Probability of CME impact on exoplanets orbiting M dwarfs and solar-like stars. Astrophys. J. 826, 195. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kazachenko, M.D., Canfield, R.C., Longcope, D.W., Qiu, J., Des Jardins, A., Nightingale, R.W.: 2009, Sunspot rotation, flare energetics, and flux rope helicity: the eruptive flare on 2005 May 13. Astrophys. J. 704, 1146. DOI . ADS .

    Article  ADS  Google Scholar 

  • Khodachenko, M.L., Ribas, I., Lammer, H., Grießmeier, J.-M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H.K., Farrugia, C.J., Rucker, H.O.: 2007, Coronal Mass Ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 167. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kliem, B., Rust, S., Seehafer, N.: 2011, Helicity transport in a simulated coronal mass ejection. In: Bonanno, A., de Gouveia Dal Pino, E., Kosovichev, A.G. (eds.) Advances in Plasma Astrophysics, IAU Symposium 274, 125. DOI . ADS .

    Google Scholar 

  • Kooi, J.E., Fischer, P.D., Buffo, J.J., Spangler, S.R.: 2016, VLA Measurements of Faraday Rotation through Coronal Mass Ejections. arXiv . ADS .

  • Kumar, A., Rust, D.M.: 1996, Interplanetary magnetic clouds, helicity conservation, and current-core flux-ropes. J. Geophys. Res. 101, 15667. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kunkel, V., Chen, J.: 2010, Evolution of a coronal mass ejection and its magnetic field in interplanetary space. Astrophys. J. Lett. 715, L80. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lammer, H., Lichtenegger, H.I.M., Kulikov, Y.N., Grießmeier, J.-M., Terada, N., Erkaev, N.V., Biernat, H.K., Khodachenko, M.L., Ribas, I., Penz, T., Selsis, F.: 2007, Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leconte, J., Wu, H., Menou, K., Murray, N.: 2015, Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leitner, M., Farrugia, C.J., MöStl, C., Ogilvie, K.W., Galvin, A.B., Schwenn, R., Biernat, H.K.: 2007, Consequences of the force-free model of magnetic clouds for their heliospheric evolution. J. Geophys. Res. Space Phys. 112, A06113. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leitzinger, M., Odert, P., Ribas, I., Hanslmeier, A., Lammer, H., Khodachenko, M.L., Zaqarashvili, T.V., Rucker, H.O.: 2011, Search for indications of stellar mass ejections using FUV spectra. Astron. Astrophys. 536, A62. DOI . ADS .

    Article  ADS  Google Scholar 

  • Leitzinger, M., Odert, P., Greimel, R., Korhonen, H., Guenther, E.W., Hanslmeier, A., Lammer, H., Khodachenko, M.L.: 2014, A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1. Mon. Not. Roy. Astron. Soc. 443, 898. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995-2003: model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y., Richardson, J.D., Belcher, J.W.: 2005, A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planet. Space Sci. 53, 3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lundquist, S.: 1950, Ark. Fys. 2, 361.

    MathSciNet  Google Scholar 

  • Luoni, M.L., Mandrini, C.H., Dasso, S., van Driel-Gesztelyi, L., Démoulin, P.: 2005, Tracing magnetic helicity from the solar corona to the interplanetary space. J. Atmos. Solar-Terr. Phys. 67, 1734. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Zurbuchen, T.H., Fisk, L.A., Antiochos, S.K.: 2003, Internal structure of magnetic clouds: plasma and composition. J. Geophys. Res. Space Phys. 108, 1239. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Gruesbeck, J.R., Zurbuchen, T.H., Antiochos, S.K.: 2005, Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res. Space Phys. 110, A08107. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lynch, B.J., Antiochos, S.K., DeVore, C.R., Luhmann, J.G., Zurbuchen, T.H.: 2008, Topological evolution of a fast magnetic breakout CME in three dimensions. Astrophys. J. 683, 1192. DOI . ADS .

    Article  ADS  Google Scholar 

  • MacNeice, P., Antiochos, S.K., Phillips, A., Spicer, D.S., DeVore, C.R., Olson, K.: 2004, A numerical study of the breakout model for coronal mass ejection initiation. Astrophys. J. 614, 1028. DOI . ADS .

    Article  ADS  Google Scholar 

  • Maehara, H., Shibayama, T., Notsu, S., Notsu, Y., Nagao, T., Kusaba, S., Honda, S., Nogami, D., Shibata, K.: 2012, Superflares on solar-type stars. Nature 485, 478. DOI . ADS .

    ADS  Google Scholar 

  • Mancuso, S., Garzelli, M.V.: 2013, Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations. Astron. Astrophys. 553, A100. DOI . ADS .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Pohjolainen, S., Dasso, S., Green, L.M., Démoulin, P., van Driel-Gesztelyi, L., Copperwheat, C., Foley, C.: 2005, Interplanetary flux rope ejected from an X-ray bright point. The smallest magnetic cloud source-region ever observed. Astron. Astrophys. 434, 725. DOI . ADS .

    Article  ADS  Google Scholar 

  • Moraitis, K., Tziotziou, K., Georgoulis, M.K., Archontis, V.: 2014, Validation and benchmarking of a practical free magnetic energy and relative magnetic helicity budget calculation in solar magnetic structures. Solar Phys. 289, 4453. DOI . ADS .

    Article  ADS  Google Scholar 

  • Möstl, C., Farrugia, C.J., Kilpua, E.K.J., Jian, L.K., Liu, Y., Eastwood, J.P., Harrison, R.A., Webb, D.F., Temmer, M., Odstrcil, D., Davies, J.A., Rollett, T., Luhmann, J.G., Nitta, N., Mulligan, T., Jensen, E.A., Forsyth, R., Lavraud, B., de Koning, C.A., Veronig, A.M., Galvin, A.B., Zhang, T.L., Anderson, B.J.: 2012, Multi-point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere. Astrophys. J. 758, 10. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nakwacki, M.S., Dasso, S., Démoulin, P., Mandrini, C.H., Gulisano, A.M.: 2011, Dynamical evolution of a magnetic cloud from the Sun to 5.4 AU. Astron. Astrophys. 535, A52. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nieves-Chinchilla, T., Linton, M.G., Hidalgo, M.A., Vourlidas, A., Savani, N.P., Szabo, A., Farrugia, C., Yu, W.: 2016, A circular-cylindrical flux-rope analytical model for magnetic clouds. Astrophys. J. 823, 27. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nindos, A., Andrews, M.D.: 2004, The association of big flares and coronal mass ejections: what is the role of magnetic helicity? Astrophys. J. Lett. 616, L175. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nindos, A., Zhang, J., Zhang, H.: 2003, The magnetic helicity budget of solar active regions and coronal mass ejections. Astrophys. J. 594, 1033. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nindos, A., Patsourakos, S., Vourlidas, A., Tagikas, C.: 2015, How common are hot magnetic flux ropes in the low solar corona? A statistical study of EUV observations. Astrophys. J. 808, 117. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nogami, D., Notsu, Y., Honda, S., Maehara, H., Notsu, S., Shibayama, T., Shibata, K.: 2014, Two sun-like superflare stars rotating as slow as the Sun. Publ. Astron. Soc. Japan 66, L4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osten, R.A., Wolk, S.J.: 2015, Connecting flares and transient mass-loss events in magnetically active stars. Astrophys. J. 809, 79. DOI . ADS .

    Article  ADS  Google Scholar 

  • Osten, R., Livio, M., Lubow, S., Pringle, J.E., Soderblom, D., Valenti, J.: 2013, Coronal mass ejections as a mechanism for producing IR variability in debris disks. Astrophys. J. Lett. 765, L44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pariat, E., Nindos, A., Démoulin, P., Berger, M.A.: 2006, What is the spatial distribution of magnetic helicity injected in a solar active region? Astron. Astrophys. 452, 623. DOI . ADS .

    Article  ADS  Google Scholar 

  • Patsourakos, S., Georgoulis, M.K.: 2016, Near-Sun and 1 AU magnetic field of coronal mass ejections: a parametric study. Astron. Astrophys. 595, A121. DOI . ADS .

    Article  ADS  Google Scholar 

  • Patsourakos, S., Georgoulis, M.K., Vourlidas, A., Nindos, A., Sarris, T., Anagnostopoulos, G., Anastasiadis, A., Chintzoglou, G., Daglis, I.A., Gontikakis, C., Hatzigeorgiu, N., Iliopoulos, A.C., Katsavrias, C., Kouloumvakos, A., Moraitis, K., Nieves-Chinchilla, T., Pavlos, G., Sarafopoulos, D., Syntelis, P., Tsironis, C., Tziotziou, K., Vogiatzis, I.I., Balasis, G., Georgiou, M., Karakatsanis, L.P., Malandraki, O.E., Papadimitriou, C., Odstrčil, D., Pavlos, E.G., Podlachikova, O., Sandberg, I., Turner, D.L., Xenakis, M.N., Sarris, E., Tsinganos, K., Vlahos, L.: 2016, The major geoeffective solar eruptions of 2012 March 7: comprehensive Sun-to-Earth analysis. Astrophys. J. 817, 14. DOI . ADS .

    Article  ADS  Google Scholar 

  • Patzold, M., Bird, M.K., Volland, H., Levy, G.S., Seidel, B.L., Stelzried, C.T.: 1987, The mean coronal magnetic field determined from HELIOS Faraday rotation measurements. Solar Phys. 109, 91. DOI . ADS .

    Article  ADS  Google Scholar 

  • Poomvises, W., Gopalswamy, N., Yashiro, S., Kwon, R.-Y., Olmedo, O.: 2012, Determination of the heliospheric radial magnetic field from the standoff distance of a CME-driven shock observed by the STEREO spacecraft. Astrophys. J. 758, 118. DOI . ADS .

    Article  ADS  Google Scholar 

  • Priest, E.R., Longcope, D.W., Janvier, M.: 2016, Evolution of magnetic helicity during eruptive flares and coronal mass ejections. Solar Phys. 291, 2017. DOI . ADS .

    Article  ADS  Google Scholar 

  • Régnier, S., Canfield, R.C.: 2006, Evolution of magnetic fields and energetics of flares in active region 8210. Astron. Astrophys. 451, 319. DOI . ADS .

    Article  ADS  Google Scholar 

  • Riley, P., Linker, J.A., Lionello, R., Mikić, Z., Odstrcil, D., Hidalgo, M.A., Cid, C., Hu, Q., Lepping, R.P., Lynch, B.J., Rees, A.: 2004, Fitting flux ropes to a global MHD solution: a comparison of techniques. J. Atmos. Solar-Terr. Phys. 66, 1321. DOI . ADS .

    Article  ADS  Google Scholar 

  • Savani, N.P., Vourlidas, A., Szabo, A., Mays, M.L., Richardson, I.G., Thompson, B.J., Pulkkinen, A., Evans, R., Nieves-Chinchilla, T.: 2015, Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather 13, 374. DOI . ADS .

    Article  ADS  Google Scholar 

  • Scalo, J., Kaltenegger, L., Segura, A.G., Fridlund, M., Ribas, I., Kulikov, Y.N., Grenfell, J.L., Rauer, H., Odert, P., Leitzinger, M., Selsis, F., Khodachenko, M.L., Eiroa, C., Kasting, J., Lammer, H.: 2007, M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85. DOI . ADS .

    Article  ADS  Google Scholar 

  • Schrijver, C.J., Beer, J., Baltensperger, U., Cliver, E.W., Güdel, M., Hudson, H.S., McCracken, K.G., Osten, R.A., Peter, T., Soderblom, D.R., Usoskin, I.G., Wolff, E.W.: 2012, Estimating the frequency of extremely energetic solar events, based on solar, stellar, lunar, and terrestrial records. J. Geophys. Res. Space Phys. 117, A08103. DOI . ADS .

    Article  ADS  Google Scholar 

  • See, V., Jardine, M., Vidotto, A.A., Petit, P., Marsden, S.C., Jeffers, S.V., do Nascimento, J.D.: 2014, The effects of stellar winds on the magnetospheres and potential habitability of exoplanets. Astron. Astrophys. 570, A99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Selsis, F., Kasting, J.F., Levrard, B., Paillet, J., Ribas, I., Delfosse, X.: 2007, Habitable planets around the star Gliese 581? Astron. Astrophys. 476, 1373. DOI . ADS .

    Article  ADS  Google Scholar 

  • Semel, M.: 1989, Zeeman–Doppler imaging of active stars. I – basic principles. Astron. Astrophys. 225, 456. ADS .

    ADS  Google Scholar 

  • Shibata, K., Isobe, H., Hillier, A., Choudhuri, A.R., Maehara, H., Ishii, T.T., Shibayama, T., Notsu, S., Notsu, Y., Nagao, T., Honda, S., Nogami, D.: 2013, Can superflares occur on our Sun? Publ. Astron. Soc. Japan 65, 49. DOI . ADS .

    Article  ADS  Google Scholar 

  • Shibayama, T., Maehara, H., Notsu, S., Notsu, Y., Nagao, T., Honda, S., Ishii, T.T., Nogami, D., Shibata, K.: 2013, Superflares on solar-type stars observed with Kepler. I. Statistical properties of superflares. Astrophys. J. Suppl. 209, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., Wiegelmann, T., Hayashi, K., Chen, Q., Thalmann, J.: 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. Astrophys. J. 748, 77. DOI . ADS .

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., Nagashima, K.: 2017, Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J. 834, 56. DOI . ADS .

    Article  ADS  Google Scholar 

  • Torres, G., Kipping, D.M., Fressin, F., Caldwell, D.A., Twicken, J.D., Ballard, S., Batalha, N.M., Bryson, S.T., Ciardi, D.R., Henze, C.E., Howell, S.B., Isaacson, H.T., Jenkins, J.M., Muirhead, P.S., Newton, E.R., Petigura, E.A., Barclay, T., Borucki, W.J., Crepp, J.R., Everett, M.E., Horch, E.P., Howard, A.W., Kolbl, R., Marcy, G.W., McCauliff, S., Quintana, E.V.: 2015, Validation of 12 small Kepler transiting planets in the habitable zone. Astrophys. J. 800, 99. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tun, S.D., Vourlidas, A.: 2013, Derivation of the magnetic field in a coronal mass ejection core via multi-frequency radio imaging. Astrophys. J. 766, 130. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tziotziou, K., Georgoulis, M.K., Liu, Y.: 2013, Interpreting eruptive behavior in NOAA AR 11158 via the region’s magnetic energy and relative-helicity budgets. Astrophys. J. 772, 115. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tziotziou, K., Georgoulis, M.K., Raouafi, N.-E.: 2012, The magnetic energy-helicity diagram of solar active regions. Astrophys. J. Lett. 759, L4. DOI . ADS .

    Article  ADS  Google Scholar 

  • Usoskin, I.G., Kromer, B., Ludlow, F., Beer, J., Friedrich, M., Kovaltsov, G.A., Solanki, S.K., Wacker, L.: 2013, The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, L3. DOI . ADS .

    Article  ADS  Google Scholar 

  • Valori, G., Démoulin, P., Pariat, E.: 2012, Comparing values of the relative magnetic helicity in finite volumes. Solar Phys. 278, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vandas, M., Romashets, E.: 2016, Toroidal linear force-free magnetic fields with axial symmetry. Astron. Astrophys. 585, A108. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vidotto, A.A., Jardine, M., Morin, J., Donati, J.-F., Lang, P., Russell, A.J.B.: 2013, Effects of M dwarf magnetic fields on potentially habitable planets. Astron. Astrophys. 557, A67. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vidotto, A.A., Gregory, S.G., Jardine, M., Donati, J.F., Petit, P., Morin, J., Folsom, C.P., Bouvier, J., Cameron, A.C., Hussain, G., Marsden, S., Waite, I.A., Fares, R., Jeffers, S., do Nascimento, J.D.: 2014, Stellar magnetism: empirical trends with age and rotation. Mon. Not. Roy. Astron. Soc. 441, 2361. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vourlidas, A., Subramanian, P., Dere, K.P., Howard, R.A.: 2000, Large-angle spectrometric coronagraph measurements of the energetics of coronal mass ejections. Astrophys. J. 534, 456. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vrsnak, B., Ruzdjak, V., Rompolt, B., Rosa, D., Zlobec, P.: 1993, Kinematics and evolution of twist in the eruptive prominence of August 18, 1980. Solar Phys. 146, 147. DOI . ADS .

    Article  ADS  Google Scholar 

  • Vršnak, B., Magdalenić, J., Zlobec, P.: 2004, Band-splitting of coronal and interplanetary type II bursts. III. Physical conditions in the upper corona and interplanetary space. Astron. Astrophys. 413, 753. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wang, Y., Zhuang, B., Hu, Q., Liu, R., Shen, C., Chi, Y.: 2016, On the twists of interplanetary magnetic flux ropes observed at 1 AU. J. Geophys. Res. Space Phys. 121, 9316. DOI . ADS .

    Article  ADS  Google Scholar 

  • Winslow, R.M., Lugaz, N., Philpott, L.C., Schwadron, N.A., Farrugia, C.J., Anderson, B.J., Smith, C.W.: 2015, Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. J. Geophys. Res. Space Phys. 120, 6101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wood, B.E., Howard, R.A., Socker, D.G.: 2010, Reconstructing the morphology of an evolving coronal mass ejection. Astrophys. J. 715, 1524. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2005, Relationships for predicting magnetic cloud-related geomagnetic storm intensity. J. Atmos. Solar-Terr. Phys. 67, 283. DOI . ADS .

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Akiyama, S., Michalek, G., Howard, R.A.: 2005, Visibility of coronal mass ejections as a function of flare location and intensity. J. Geophys. Res. Space Phys. 110, A12S05. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zuluaga, J.I., Bustamante, S.: 2016, Geomagnetic properties of Proxima Centauri b analogues. Submitted to Astrophys. J. Lett. arXiv , ADS .

Download references

Acknowledgements

The authors thank the referee for the useful suggestion to investigate the impact of the uncertainty of the erupted helicity. This research has been partly cofinanced by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: “Thales. Investing in knowledge society through the European Social Fund”. SP acknowledges support from an FP7 Marie Curie Grant (FP7-PEOPLE-2010-RG/268288). MKG wishes to acknowledge support from the EU’s Seventh Framework Programme under grant agreement no PIRG07-GA-2010-268245. The authors acknowledge the Variability of the Sun and Its Terrestrial Impact (VarSITI) international program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patsourakos.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Appendices

Appendix

The appendix presents a short description of the geometrical CME model used in the current investigation (Appendix A). Moreover, it contains short descriptions and equations relating magnetic field magnitude with \(H_{\mathrm{m}}\) and various geometrical parameters for various theoretical CME models (Appendices B – G).

Appendix A: Deducing CME Geometrical Parameters from the GCS Model

To obtain the geometrical parameters \(R\) and \(L\), we adopt the graduated cylindrical shell (GCS) forward-fitting model of Thernisien, Vourlidas, and Howard (2009). This is a geometrical flux-rope model routinely used to fit the large-scale appearance of flux-rope CMEs in multi-viewpoint observations acquired by coronagraphs onboard the Solar and Heliospheric Observatory (SOHO) and Solar Terrestrial Relations Observatory (STEREO) spacecraft. The GCS user modifies a set of free parameters (CME height, half-angular width \(w\), aspect ratio \(k\), tilt angle, and central longitude and latitude) to achieve a best-fit agreement between the model and observations. A detailed description can be found in Thernisien, Vourlidas, and Howard (2009).

In the framework of the GCS model, the CME radius \(R\) at a heliocentric distance \(r\) is given by the following equation:

$$ R(r)=k r. $$
(4)

To assess the flux-rope length \(L\), it is assumed that the CME front is a cylindrical section (see Figure 1 of Démoulin and Dasso, 2009) with an angular width provided by the geometrical fitting. One may then write

$$ L=2 w r_{\mathrm{mid}}, $$
(5)

where \(r_{\mathrm{mid}}\) is the heliocentric distance half-way through the model cross section, along its axis of symmetry. The half-angular width \(w\) is given in radians.

Appendix B: Cylindrical Linear Force-Free Model

The Lundquist flux-rope model (Lundquist, 1950) is arguably the most commonly used flux-rope model and corresponds to a cylindrical force-free solution.

Based on results from Dasso et al. (2006), we obtain for a Lundquist flux rope:

$$ H_{\mathrm{m}}=\frac{4\pi{B_{0}}^{2}L}{\alpha} \int_{0}^{R}{J_{1}}^{2}( \alpha R)\,\mathrm{d}r, $$
(6)

with \(L\) and \(R\) the flux-rope length and radius, respectively, \(J_{1}\) the Bessel function of the first kind, \(B_{0}\) the maximum axial field, and \(\alpha\) the force-free parameter. With the common assumption of a purely axial (azimuthal) magnetic field at the flux-rope axis (edge), we obtain

$$ \alpha R = 2.405. $$
(7)

Appendix C: Cylindrical Nonlinear Force-Free Model

This cylindrical nonlinear force-free flux-rope model was proposed by Gold and Hoyle (1960). According to Dasso et al. (2006), we have

$$ H_{\mathrm{m}}=L\biggl(\frac{8\pi[\ln (1+U^{2}/4)]^{2}}{U^{2}}\biggr)B_{0}^{2}R^{4}{ \tau}_{0}, $$
(8)

with \(U=2 \tau_{0} R\) and \(\tau_{0}=\frac{1}{2}\alpha\).

Appendix D: Toroidal Linear Force-Free Model

This toroidal force-free model was proposed by Vandas and Romashets (2016):

$$ H_{\mathrm{m}}=(2\pi H)\frac{B_{0}^{2}\pi{H}^{3}}{4{\alpha }_{0}}\biggl[8-\biggl(1+\frac{1}{{\alpha}_{0}^{2}} \biggr)\frac{R^{2}}{H^{2}}\biggr]J_{1}^{2}( \alpha_{0}), $$
(9)

with \(H\) and \(R\) corresponding to the torus major and minor axis, respectively, and \(\alpha_{0} = 2.405\). We take \(H\) equal to \(r_{\mathrm{mid}}\). Both \(R\) and \(r_{\mathrm{mid}}\) are defined in Appendix A.

Appendix E: Linear Force-Free Model Spheromak

This linear force-free spheromak model was proposed by Kataoka et al. (2009):

$$ H_{\mathrm{m}}=0.045{r_{\mathrm{mid}}^{4}}B_{0}^{2}, $$
(10)

and corresponds to a Sun-centered sphere with radius \(r_{\mathrm {mid}}\) meant to approximate a spherical magnetic cloud. The value of \(r_{\mathrm {mid}}\) is the same as in Equation (4).

Appendix F: Cylindrical Constant-Current Non-Force-Free Model

This cylindrical constant-current non-force model was proposed by Hidalgo et al. (2000) and was generalized by Nieves-Chinchilla et al. (2016).

According to Dasso et al. (2006), we have that

$$ H_{\mathrm{m}} = \frac{7 \pi}{30} \tau_{0} L R^{4} B_{0}^{2} , $$
(11)

where \({\tau}_{0}\) is the twist per unit length at the flux-rope axis. The twist parameter \({\tau}_{0}\) can be written as

$$ {\tau}_{0}=\frac{N_{\mathrm{turns}}}{L}, $$
(12)

with \(N_{\mathrm{turns}}\) the total number of field turns along the flux-rope axis. To estimate \({\tau}_{0,}\) we use \(L\) as calculated in Appendix A and assume that \(N_{\mathrm{turns}}\) is equal to 0.5 and 10, corresponding to the extreme cases between a weakly and a strongly twisted (with multiple turns) flux-rope, respectively. The number of \(N_{\mathrm{turns}}\) covering this interval can be deduced from solar imaging and magnetic field observations (via photospheric magnetic field extrapolations) (e.g. Vrsnak et al., 1993; Gary and Moore, 2004; Guo et al., 2013; Chintzoglou, Patsourakos, and Vourlidas, 2015) and MC fits at 1 AU (e.g. Hu et al., 2014; Wang et al., 2016).

Appendix G: Cylindrical Linear Azimuthal Current Non-Force-Free Model

This cylindrical linear azimuthal current non-force-free model was proposed by Cid et al. (2002) and was generalized by Nieves-Chinchilla et al. (2016). In this model the azimuthal current increases with distance from the flux-rope axis.

According to Dasso et al. (2006), we obtain

$$ H_{\mathrm{m}} = \frac{\pi}{3} \tau_{0} L R^{4} B_{0}^{2}. $$
(13)

Like in the cylindrical constant-current non-force-free case, we assume that \(N_{\mathrm{turns}}\) is equal to 0.5 and 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patsourakos, S., Georgoulis, M.K. A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability. Sol Phys 292, 89 (2017). https://doi.org/10.1007/s11207-017-1124-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1124-1

Keywords

Navigation