Skip to main content
Log in

The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The plasma of the solar wind incident upon the Earth’s magnetosphere can produce several types of geoeffective events. Among them, an important phenomenon consists of the interrelation of the magnetospheric–ionospheric current systems and the charged-particle population of the Earth’s Van Allen radiation belts. Ultra-low-frequency (ULF) waves resonantly interacting with such particles have been claimed to play a major role in the energetic particle flux changes, particularly at the outer radiation belt, which is mainly composed of electrons at relativistic energies. In this article, we use global magnetohydrodynamic simulations along with in situ and ground-based observations to evaluate the ability of two different solar wind transient (SWT) events to generate ULF (few to tens of mHz) waves in the equatorial region of the inner magnetosphere. Magnetic field and plasma data from the Advanced Composition Explorer (ACE) satellite were used to characterize these two SWT events as being a sector boundary crossing (SBC) on 24 September 2013, and an interplanetary coronal mass ejection (ICME) in conjunction with a shock on 2 October 2013. Associated with these events, the twin Van Allen Probes measured a depletion of the outer belt relativistic electron flux concurrent with magnetic and electric field power spectra consistent with ULF waves. Two ground-based observatories apart in 90 longitude also showed evidence of ULF-wave activity for the two SWT events. Magnetohydrodynamic (MHD) simulation results show that the ULF-like oscillations in the modeled electric and magnetic fields observed during both events are a result from the SWT coupling to the magnetosphere. The analysis of the MHD simulation results together with the observations leads to the conclusion that the two SWT structures analyzed in this article can be geoeffective on different levels, with each one leading to distinct ring current intensities, but both SWTs are related to the same disturbance in the outer radiation belt, i.e. a dropout in the relativistic electron fluxes. Therefore, minor disturbances in the solar wind parameters, such as those related to an SBC, may initiate physical processes that are able to be geoeffective for the outer radiation belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baker, D.N., Li, X., Turner, N., Allen, J.H., Bargatze, L.F., Blake, J.B., et al.: 1997, Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements. J. Geophys. Res. 102(A7), 14141. DOI .

    Article  ADS  Google Scholar 

  • Baker, D.N., Kanekal, S.G., Hoxie, V.C., Batiste, S., Bolton, M., Li, X., et al.: 2013, The relativistic electron-proton telescope (rept) instrument on board the radiation belt storm probes (rbsp) spacecraft: Characterization of earth’s radiation belt high-energy particle populations. Space Sci. Rev. 179(1), 337. DOI .

    Article  ADS  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2016, Compressional perturbations of the dayside magnetosphere during high-speed-stream-driven geomagnetic storms. J. Geophys. Res. 121(5), 4569. DOI .

    Article  Google Scholar 

  • Crooker, N.U.: 2000, Solar and heliospheric geoeffective disturbances. J. Atmos. Solar-Terr. Phys. 62(12), 1071. DOI .

    Article  ADS  Google Scholar 

  • De Zeeuw, D.L., Sazykin, S., Wolf, R.A., Gombosi, T.I., Ridley, A.J., Tóth, G.: 2004, Coupling of a global mhd code and an inner magnetospheric model: Initial results. J. Geophys. Res. 109(A12), A12219. DOI .

    Article  ADS  Google Scholar 

  • Elkington, S.R.: 2006, A review of ULF interactions with radiation belt electrons. In: Magnetospheric ULF Waves: Synthesis and New Directions, AGU, Washington. DOI .

    Google Scholar 

  • Gombosi, T.I., Powell, K.G., De Zeeuw, D.L., Clauer, C.R., Hansen, K.C., Manchester, W.B., Ridley, A.J., Roussev, I.I., Sokolov, I.V., Stout, Q.F., Tóth, G.: 2004, Solution-adaptive magnetohydrodynamics for space plasmas: Sun-to-earth simulations. Comput. Sci. Eng. 6(2). DOI

  • Green, J.C., Kivelson, M.G.: 2001, A tale of two theories: How the adiabatic response and ulf waves affect relativistic electrons. J. Geophys. Res. 106(A11), 25777. DOI .

    Article  ADS  Google Scholar 

  • Hao, Y.X., Zong, Q.-G., Wang, Y.F., Zhou, X.-Z., Zhang, H., Fu, S.Y., et al.: 2014, Interactions of energetic electrons with ulf waves triggered by interplanetary shock: Van allen probes observations in the magnetotail. J. Geophys. Res. 119(10), 8262. DOI .

    Article  Google Scholar 

  • Hudson, M.K., Elkington, S.R., Lyon, J.G., Goodrich, C.C., Rosenberg, T.J.: 1999, Simulation of radiation belt dynamics driven by solar wind variations. In: Burch, J.L., Carovillano, R.L., Antiochos, S.K. (eds.) Sun–Earth Plasma Connections, AGU, Washington. DOI .

    Google Scholar 

  • Hudson, M.K., Baker, D.N., Goldstein, J., Kress, B.T., Paral, J., Toffoletto, F.R., Wiltberger, M.: 2014, Simulated magnetopause losses and van allen probe flux dropouts. Geophys. Res. Lett. 41(4), 1113. DOI .

    Article  ADS  Google Scholar 

  • Ilie, R., Liemohn, M.W., Ridley, A.: 2010, The effect of smoothed solar wind inputs on global modeling results. J. Geophys. Res. Space Phys. 115(A1), A01213. DOI .

    Article  ADS  Google Scholar 

  • Imajo, S., Yumoto, K., Uozumi, T., Kawano, H., Abe, S., Ikeda, A., et al.: 2014, Analysis of propagation delays of compressional pi 2 waves between geosynchronous altitude and low latitudes. Earth Planets Space 66(1), 1. DOI .

    Article  Google Scholar 

  • Kivelson, M.G., Russell, C.T. (eds.): 1995, Introduction to Space Physics, Cambridge Univ. Press, New York.

    Google Scholar 

  • Kletzing, C.A., Kurth, W.S., Acuna, M., MacDowall, R.J., Torbert, R.B., Averkamp, T., et al.: 2013, The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev. 179(1), 127. DOI .

    Article  ADS  Google Scholar 

  • Lyatsky, W., Khazanov, G.V.: 2008, A predictive model for relativistic electrons at geostationary orbit. Geophys. Res. Lett. 35(15), L15108. DOI .

    Article  ADS  Google Scholar 

  • Mathie, R.A., Mann, I.R.: 2000, A correlation between extended intervals of ulf wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys. Res. Lett. 27(20), 3261. DOI .

    Article  ADS  Google Scholar 

  • Mauk, B.H., Fox, N.J., Kanekal, S.G., Kessel, R.L., Sibeck, D.G., Ukhorskiy, A.: 2013, Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev. 179(1), 3. DOI .

    Article  ADS  Google Scholar 

  • Millan, R.M., Thorne, R.M.: 2007, Review of radiation belt relativistic electron losses. J. Atmos. Solar-Terr. Phys. 69(3), 362. DOI .

    Article  ADS  Google Scholar 

  • Miyoshi, Y., Kataoka, R.: 2008, Flux enhancement of the outer radiation belt electrons after the arrival of stream interaction regions. J. Geophys. Res. 113(A3), A03S09. DOI .

    Article  ADS  Google Scholar 

  • Murphy, K.R., Rae, I.J., Mann, I.R., Walsh, A.P., Milling, D.K., Kale, A.: 2011, The dependence of pi2 waveforms on periodic velocity enhancements within bursty bulk flows. Ann. Geophys. 29(3), 493.

    Article  ADS  Google Scholar 

  • Northrop, T.G.: 1963, Adiabatic charged-particle motion. Rev. Geophys. 1(3), 283. DOI .

    Article  ADS  Google Scholar 

  • Paral, J., Hudson, M.K., Kress, B.T., Wiltberger, M.J., Wygant, J.R., Singer, H.J.: 2015, Magnetohydrodynamic modeling of three van Allen probes storms in 2012 and 2013. Ann. Geophys. 33(8), 1037. DOI .

    Article  ADS  Google Scholar 

  • Paulikas, G.A., Blake, J.B.: 1979, Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. In: Olson, W.P. (ed.) Quantitative Modeling of Magnetospheric Processes, AGU, Washington. DOI .

    Google Scholar 

  • Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.P.: 2003, Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30(10), 1529. DOI .

    Article  ADS  Google Scholar 

  • Reeves, G.D., Morley, S.K., Friedel, R.H.W., Henderson, M.G., Cayton, T.E., Cunningham, G., et al.: 2011, On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. J. Geophys. Res. 116(A2), A02213. DOI .

    Article  ADS  Google Scholar 

  • Ridley, A.J., Liemohn, M.W.: 2002, A model-derived storm time asymmetric ring current driven electric field description. J. Geophys. Res. 107(A8), SMP2.

    Article  Google Scholar 

  • Ridley, A.J., Gombosi, T.I., DeZeeuw, D.L.: 2004, Ionospheric control of the magnetosphere: Conductance. Ann. Geophys. 22(2), 567. DOI .

    Article  ADS  Google Scholar 

  • Roederer, J.G.: 1970, Dynamics of Geomagnetically Trapped Radiation, Vol. 2, Springer, Berlin.

    Book  Google Scholar 

  • Shprits, Y.Y., Thorne, R.M., Friedel, R., Reeves, G.D., Fennell, J., Baker, D.N., Kanekal, S.G.: 2006, Outward radial diffusion driven by losses at magnetopause. J. Geophys. Res. 111(A11), A11214. DOI .

    Article  ADS  Google Scholar 

  • Shue, J.-H., Song, P., Russell, C.T., Steinberg, J.T., Chao, J.K., Zastenker, G., et al.: 1998, Magnetopause location under extreme solar wind conditions. J. Geophys. Res. 103(A8), 17691. DOI .

    Article  ADS  Google Scholar 

  • Stone, E.C., Frandsen, A.M., Mewaldt, R.A., Christian, E.R., Margolies, D., Ormes, J.F., Snow, F.: 1998, The advanced composition explorer. Space Sci. Rev. 86, 1. DOI .

    Article  ADS  Google Scholar 

  • Su, Z., Gao, Z., Zhu, H., Li, W., Zheng, H., Wang, Y., et al.: 2016, Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J. Geophys. Res. 121(7), 6400. 2016JA022546. DOI .

    Article  Google Scholar 

  • Su, Z., Zhu, H., Xiao, F., Zheng, H., Wang, Y., He, Z., Shen, C., Shen, C., Wang, C.B., Liu, R., Zhang, M., Wang, S., Kletzing, C.A., Kurth, W.S., Hospodarsky, G.B., Spence, H.E., Reeves, G.D., Funsten, H.O., Blake, J.B., Baker, D.N., Wygant, J.R.: 2014, Intense duskside lower band chorus waves observed by van allen probes: Generation and potential acceleration effect on radiation belt electrons. J. Geophys. Res. 119(6), 4266. DOI .

    Article  Google Scholar 

  • Tóth, G., van der Holst, B., Sokolov, I.V., Zeeuw, D.L.D., Gombosi, T.I., Fang, F., Manchester, W.B., Meng, X., Najib, D., Powell, K.G., Stout, Q.F., Glocer, A., Ma, Y.-J., Opher, M.: 2011, Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231(3), 870. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Tsyganenko, N.A.: 2002, A model of the near magnetosphere with a dawn-dusk asymmetry 2. parameterization and fitting to observations. J. Geophys. Res. 107(A8), SMP10. DOI .

    Google Scholar 

  • Tsyganenko, N.A., Sitnov, M.I.: 2005, Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. 110(A3), A03208. DOI .

    Article  ADS  Google Scholar 

  • Wing, S., Johnson, J.R., Camporeale, E., Reeves, G.D.: 2016, Information theoretical approach to discovering solar wind drivers of the outer radiation belt. J. Geophys. Res. DOI .

    Google Scholar 

  • Wygant, J.R., Bonnell, J.W., Goetz, K., Ergun, R.E., Mozer, F.S., Bale, S.D., et al.: 2013, The electric field and waves instruments on the radiation belt storm probes mission. Space Sci. Rev. 179(1–4), 183. DOI .

    Article  ADS  Google Scholar 

  • Xiang, Z., Ni, B., Zhou, C., Zou, Z., Gu, X., Zhao, Z., Zhang, X., Zhang, X., Zhang, S., Li, X., Zuo, P., Spence, H., Reeves, G.: 2016, Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse. Ann. Geophys. 34(5), 493. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center for Space Environment Modeling (CSEM) at the University of Michigan for providing the numerical SWMF/BATS-R-US Code available at: http://csem.engin.umich.edu/tools/swmf/downloads.php . We acknowledge the Kakioka Magnetic Observatory of the Japan Meteorological Agency and Bureau Central de Magnetisme Terrestre (France) for providing the geomagnetic field 1-second digitized data. We are also in debt to the Van Allen Probes mission teams, NASA’s CDAWeb, OMNI, and NGDC for online data access and data analysis tools. Solar wind parameters presented in Section 2 measured by ACE are available at http://www.srl.caltech.edu/ACE/ASC/DATA/browse-data/browse-curr/ . The Van Allen Probes mission datasets presented in Sections 2 and 4 and supporting information are available at CDAWeb http://cdaweb.gsfc.nasa.gov/istp_public/ .

C.R. Braga and V.M. Souza thank the São Paulo research foundation (FAPESP) for grant 2014/24711-6 and 2014/21229-9. A. Dal Lago, M. Rockenbach, M.V. Alves, R.R.S. de Mendonça and D. Koga thank CNPq for research grant 304209/2014-7, 301495/2015-7, 305373/2010-2, 152050/2016-7, and 112886/2015-9. P.R. Jauer and L.A. da Silva thank the Research Foundation CNPq/PCI for financial support process number 313281/2015-7 and 312743/2015-7. We would also like to thank CT-INFRA-FINEP/INPE 11 number 01.12.0527.00 and EMBRACE/INPE: http://www2.inpe.br/climaespacial/portal/en/ .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Alves.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-Affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, L.R., Souza, V.M., Jauer, P.R. et al. The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere. Sol Phys 292, 92 (2017). https://doi.org/10.1007/s11207-017-1113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-017-1113-4

Keywords

Navigation