Skip to main content
Log in

Automation of Tracking Various Sunspot Group Entities and Demonstrating Its Usage on the Flaring NOAA AR 11429

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A method based on set and graph operations was developed to find and track related entities of sunspot groups on a series of consecutive solar images. Of course, if we can track entities of a sunspot group, we can also track various properties (e.g., position, area, magnetic field, and intensity) associated with them. A new higher-level sunspot-group entity belonging to the whole image series, a family, was introduced to cope with the mergings and separations of various sunspot group entities.

To demonstrate the usefulness of the method, it was applied to NOAA AR 11429 using Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) images. This large sunspot group produced several X, M, and C class flares, among others, an X5.4 class flare on 2012 March 7. Abrupt transient and permanent variations in the mean line-of-sight (LOS) magnetic field of the large umbra families were found during the X5.4 flare. Two small umbra families immediately next to the polarity inversion line (PIL) and facing each other at opposite sides of the PIL exhibited abrupt stepwise changes in their mean LOS magnetic field during the X5.4 flare. The family with positive polarity decreased and the family with negative polarity increased. Some of the large umbra families also showed abrupt decrease in their darkness during the flare. We conjecture that an umbra family being a part of a long, narrow magnetic field strip pushing in an opposite magnetic polarity penumbral domain might be one of the triggering causes of several flares. Flare-related changes were observed at every spatial scale of the studied sunspot group. Two of the large opposite-polarity umbra families underwent shearing and converging motions. The break and the turning points of the motion curves of these families were related to flares. Some of the flares coincided with abrupt changes in the motion curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Amari, T., Luciani, J.F., Aly, J.J., Mikic, Z., Linker, J.: 2003, Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. Astrophys. J. 585, 1073. DOI .

    Article  ADS  Google Scholar 

  • Anwar, B., Acton, L.W., Hudson, H.S., Makita, M., McClymont, A.N., Tsuneta, S.: 1993, Rapid sunspot motion during a major solar flare. Solar Phys. 147, 287. DOI .

    Article  ADS  Google Scholar 

  • Brown, D.S., Nightingale, R.W., Alexander, D., Schrijver, C.J., Metcalf, T.R., Shine, R.A., Title, A.M., Wolfson, C.J.: 2003, Observations of rotating sunspots from TRACE. Solar Phys. 216, 79. DOI .

    Article  ADS  Google Scholar 

  • Démoulin, P., Hénoux, J.C., Mandrini, C.H.: 1992, Development of a topological model for solar flares. Solar Phys. 139, 105. DOI .

    Article  ADS  Google Scholar 

  • Deng, N., Liu, C., Yang, G., Wang, H., Denker, C.: 2005, Rapid penumbral decay associated with an X2.3 flare in NOAA active region 9026. Astrophys. J. 623, 1195. DOI .

    Article  ADS  Google Scholar 

  • Dezső, L., Gesztelyi, L., Kondás, L., Kovács, A., Rostás, S.: 1980, Motions in the solar atmosphere associated with the white light flare of 11 July 1978. Solar Phys. 11, 67. DOI .

    Google Scholar 

  • Ding, M.D., Qui, J., Wang, H.: 2002, Non-LTE calculation of the Ni I 676.8 nanometer line in a flaring atmosphere. Astrophys. J. Lett. 576, L83. DOI .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Bercik, D.J., Welsch, B.T., Hudson, H.S.: 2012, Global forces in eruptive solar flares: The Lorentz force acting on solar atmosphere and solar interior. Solar Phys. 277, 59. DOI .

    Article  ADS  Google Scholar 

  • Gosain, S.: 2012, Evidence for collapsing fields in the corona and photosphere during the 2011 February 15 X2.2 flare: SDO/AIA and HMI observations. Astrophys. J. 749, 85. DOI .

    Article  ADS  Google Scholar 

  • Gosain, S., Venkatakrishnan, P., Tiwari, S.K.: 2009, Hinode observations of coherent lateral motion of penumbral filaments during an X-class flare. Astrophys. J. Lett. 706, L240. DOI .

    Article  ADS  Google Scholar 

  • Győri, L.: 1998, Automation of area measurement of sunspots. Solar Phys. 180, 109. DOI .

    Article  ADS  Google Scholar 

  • Hagenaar, H.J., Schrijver, C.J., Title, A.M., Shine, R.A.: 1999, Dispersal of magnetic flux in the quiet solar photosphere. Astrophys. J. 511, 932. DOI .

    Article  ADS  Google Scholar 

  • Hudson, H.S., Fisher, G.H., Welsh, B.T.: 2008, In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity, ASP. Conf. Ser. 383, 221.

    Google Scholar 

  • Kosovichev, A.G., Zharkova, V.V.: 2001, Magnetic energy release and transients in the solar flare of 2000 July 14. Astrophys. J. Lett. 550, L105. DOI .

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Liu, Y., Flconer, D., Goode, P.R., Denker, C., Wang, H.: 2005, Rapid change of \(\delta\) spot structure associated with seven major flares. Astrophys. J. 622, 722. DOI .

    Article  ADS  Google Scholar 

  • Liu, C., Deng, N., Liu, R., Lee, J., Wiegelmann, T., Wang, H.: 2012, Rapid changes of photospheric magnetic field after tether-cutting reconnection and magnetic implosion. Astrophys. J. Lett. 745, L4. DOI .

    Article  ADS  Google Scholar 

  • Mandrini, C.H., Démoulin, P., Hénoux, J.C., Machado, M.E.: 1991, Evidence for the interaction of large scale magnetic structures in solar flares. Astron. Astrophys. 250, 541.

    ADS  Google Scholar 

  • Mandrini, C.H., Rovira, M.G., Démoulin, P., Hénoux, J.C., Machado, M.E., Wilkinson, L.K.: 1993, Evidence for magnetic reconnection in large-scale magnetic structures in solar flares. Astron. Astrophys. 272, 609.

    ADS  Google Scholar 

  • Melrose, D.B.: 1997, A solar flare model based on magnetic reconnection between current-carrying loops. Astrophys. J. 486, 521.

    Article  ADS  Google Scholar 

  • Moore, R.L., Sterling, A.C., Hudson, H.S., Lemen, J.R.: 2001, Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys. J. 552, 833.

    Article  ADS  Google Scholar 

  • Murray, S.A., Bloomfield, D.S., Gallagher, P.T.: 2012, The evolution of sunspot magnetic fields associated with a solar flare. Solar Phys. 277, 45. DOI .

    Article  ADS  Google Scholar 

  • Patterson, A., Zirin, H.: 1981, Transient magnetic field changes in flares. Astrophys. J. Lett. 243, L99. DOI .

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D.: 2013, A spatio-temporal description of the abrupt changes in the photospheric magnetic and Lorentz-force vectors during the 15 February 2011 X2.2 flare. Solar Phys. 287, 415. DOI .

    Article  ADS  Google Scholar 

  • Petrie, G.J.D., Sudol, J.J.: 2010, Abrupt longitudinal magnetic field changes in flaring active regions. Astrophys. J. 724, 1218. DOI .

    Article  ADS  Google Scholar 

  • Piddington, J.H.: 1979, Solar flares – Models and predictions of the flux-rope theory. Astrophys. J. 233, 727. DOI .

    Article  ADS  Google Scholar 

  • Qiu, J., Gary, D.E.: 2003, Flare-related magnetic anomaly with a sign reversal. Astrophys. J. 599, 615. DOI .

    Article  ADS  Google Scholar 

  • Raman, K.S., Ramesh, K.B., Selvendran, R.: 2003, The role of sunspot umbral rotation in triggerig solar flares. Bull. Astron. Soc. India 31, 101.

    ADS  Google Scholar 

  • Schmieder, B., Hagyard, M.J., Ai, G., Zhang, H., Kálman, B., Győri, L., Rompolt, B., Démoulin, P., Machado, M.E.: 1994, Relationship between magnetic field evolution and flaring site in AR 6659 in June 1991. Solar Phys. 150, 199. DOI .

    Article  ADS  Google Scholar 

  • Schou, J., Scherrer, P.H., Bush, R.I., Wachter, R., Couvidat, S., Rabello-Soares, M.C., et al.: 2012, Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 229. DOI .

    Article  ADS  Google Scholar 

  • Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C.: 1996, Phenomena in an emerging active region. I. Horizontal dynamics. Astron. Astrophys. 306, 947.

    ADS  Google Scholar 

  • Tan, C., Chen, P.F., Abramenko, V., Wang, H.: 2009, Evolution of optical penumbral and shear flows associated with the X3.4 flare of 2006 December 13. Astrophys. J. 690, 1820. DOI .

    Article  ADS  Google Scholar 

  • Vemareddy, P., Ambastha, A., Maurya, R.A.: 2012, On the role of rotating sunspots in the activity of solar active region NOAA 11158. Astrophys. J. 761, 60. DOI .

    Article  ADS  Google Scholar 

  • Wang, H., Deng, N., Liu, C.: 2012, Rapid transition of uncombed penumbrae to faculae during large flares. Astrophys. J. 748, 76. DOI .

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C.: 2011, In: Choudhary, D.P., Strassmeier, K.G. (eds.) The Physics of Sun and Star Spots, Proc. IAU Symp. 273, 15.

    Google Scholar 

  • Wang, H., Spirock, T.J., Qiu, J., Ji, H., Yurchyshyn, V., Moon, Y., Denker, C., Goode, P.R.: 2002, Rapid changes of magnetic fields associated with six X-class flares. Astrophys. J. Lett. 576, 497. DOI .

    Article  ADS  Google Scholar 

  • Wang, H., Liu, C., Deng, Y., Zhang, H.: 2005, Reevaluation of the magnetic structure and evolution associated with the Bastille day flare on 2000 July 14. Astrophys. J. 627, 1031. DOI .

    Article  ADS  Google Scholar 

  • Wang, S., Liu, C., Deng, N., Liu, Y., Wang, H.: 2012, Response of the photospheric magnetic field to the X2.2 flare on February 15. Astrophys. J. Lett. 745, L17. DOI .

    Article  ADS  Google Scholar 

  • Wang, S., Liu, C., Deng, N., Wang, H.: 2014, Sudden photospheric motion and sunspot rotation associated with the X2.2 flare on 2011 February 15. Astrophys. J. Lett. 782(2), L31. DOI .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Longcope, D.W.: 2003, Magnetic helicity injection by horizontal flows in the quiet Sun. I. Mutual-helicity flux. Astrophys. J. 588, 620. DOI .

    Article  ADS  Google Scholar 

  • Yang, G., Xu, Y., Cao, W., Wang, H., Denker, C., Rimmele, T.R.: 2004, Photospheric shear flows along the magnetic neutral line of active region 10486 prior to an X10 flare. Astrophys. J. Lett. 617, L151. DOI .

    Article  ADS  Google Scholar 

  • Zhang, J., Li, L., Song, Q.: 2007, Interaction between a fast rotating sunspot and ephemeral regions as the origin of the major solar event on 2006 December 13. Astrophys. J. Lett. 662, L35. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for comments that helped improve this manuscript. SDO images are courtesy of the Solar Dynamics Observatory (NASA). The GOES “X-ray Flare” dataset was prepared by and made available through the NOAA National Geophysical Data Center (NGDC). The GOES X-ray flare times and positions data are supplied courtesy of SolarMonitor.org. The research leading to these results has received funding from the European Commissions Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHEROES (project number 284461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Győri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Győri, L. Automation of Tracking Various Sunspot Group Entities and Demonstrating Its Usage on the Flaring NOAA AR 11429. Sol Phys 290, 1627–1645 (2015). https://doi.org/10.1007/s11207-015-0714-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0714-z

Keywords

Navigation