Skip to main content
Log in

A Spatio-temporal Description of the Abrupt Changes in the Photospheric Magnetic and Lorentz-Force Vectors During the 15 February 2011 X2.2 Flare

  • SOLAR DYNAMICS AND MAGNETISM
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The active region NOAA 11158 produced the first X-class flare of Solar Cycle 24, an X2.2 flare at 01:44 UT on 15 February 2011. The Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) satellite produces 12-minute, 0.5′′ pixel−1 vector magnetograms. Here we analyze a series of these data covering a 12-hour interval centered at the time of this flare. We describe the spatial distributions of the photospheric magnetic changes associated with the flare, including the abrupt changes in the field vector, vertical electric current and Lorentz-force vector acting on the solar interior. We also describe these parameters’ temporal evolution. The abrupt magnetic changes were concentrated near the neutral line and in two neighboring sunspots. Near the neutral line, the field vectors became stronger and more horizontal during the flare and the shear increased. This was due to an increase in strength of the horizontal field components near the neutral line, most significant in the horizontal component parallel to the neutral line but the perpendicular component also increased in strength. The vertical component did not show a significant, permanent overall change at the neutral line. The increase in field strength at the neutral line was accompanied by a compensating decrease in field strength in the surrounding volume. In the two sunspots near the neutral line the integrated azimuthal field abruptly decreased during the flare but this change was permanent in only one of the spots. There was a large, abrupt, downward vertical Lorentz-force change acting on the solar interior during the flare, consistent with results of past analyses and recent theoretical work. The horizontal Lorentz force acted in opposite directions along each side of neutral line, with the two sunspots at each end subject to abrupt torsional forces relaxing their magnetic twist. These shearing forces were consistent with a contraction of field and decrease of shear near the neutral line, whereas the field itself became more sheared as a result of the field collapsing towards the neutral line from the surrounding volume. The Lorentz forces acting on the atmospheric volume above the photosphere were equal and opposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. See http://jsoc.stanford.edu/jsocwiki/ReleaseNotes and http://jsoc.stanford.edu/jsocwiki/VectorPaper .

References

Download references

Acknowledgements

I thank the referee for helpful comments that resulted in a much improved, clearer paper. SDO is a mission for NASA’s Living With a Star program. I thank Sanjay Gosain and Alexei Pevtsov for discussions. This work was supported by NSF Award No. 106205 to the National Solar Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. D. Petrie.

Additional information

Solar Dynamics and Magnetism from the Interior to the Atmosphere

Guest Editors: R. Komm, A. Kosovichev, D. Longcope, and N. Mansour

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, G.J.D. A Spatio-temporal Description of the Abrupt Changes in the Photospheric Magnetic and Lorentz-Force Vectors During the 15 February 2011 X2.2 Flare. Sol Phys 287, 415–440 (2013). https://doi.org/10.1007/s11207-012-0071-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-012-0071-0

Keywords

Navigation