Skip to main content
Log in

On the Verge of a Grand Solar Minimum: A Second Maunder Minimum?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We analyze the yearly mean sunspot-number data covering the period 1700 to 2012. We show that the yearly sunspot number is a low-dimensional deterministic chaotic system. We perform future predictions trying to forecast the solar activity during the next five years (2013 – 2017). We provide evidence that the yearly sunspot-number data can be used for long-term predictions. To test and prove that our model is able to predict the Maunder Minimum period (1645 – 1715), we perform long-term post-facto predictions comparing them with the observed sunspot-number values. We also perform long-term future predictions trying to forecast the solar activity up to 2102. Our predictions indicate that the present Cycle 24 is expected to be a low-peak cycle. We conclude that the level of solar activity is likely to be reduced significantly during the next 90 years, somewhat resembling the Maunder Minimum period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ahluwalia, H.S.: 2003, Meandering path to solar activity forecast for Cycle 23. In: Velli, M., Bruno, R., Malara, F. (eds.) AIP Conf. Proc. CP679, Pisa, Italy, 176. DOI .

    Chapter  Google Scholar 

  • Badalyan, O.G., Obridko, V.N., Sykora, J.: 2001, Brightness of the coronal green line and prediction for activity cycles 23 and 24. Solar Phys. 199, 421. DOI .

    Article  ADS  Google Scholar 

  • Clilverd, M.A., Clarke, E., Rishbeth, H., Clark, T.D.G., Ulich, T.: 2003, Solar activity levels in 2100. Astron. Geophys. 44, 5.20. DOI .

    Article  ADS  Google Scholar 

  • de Jager, C., Usoskin, I.: 2006, On possible drivers of Sun-induced climate changes. J. Atmos. Solar-Terr. Phys. 68, 2053. DOI .

    Article  ADS  Google Scholar 

  • de Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349. DOI .

    Article  ADS  Google Scholar 

  • Eddy, J.A.: 1976, The Maunder Minimum. Science 192, 1189. DOI .

    Article  ADS  Google Scholar 

  • Fraser, A.M., Swinney, H.L.: 1986, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134. DOI .

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Faria, H.H., Echer, E., Rigozo, R., Vieira, L.E.A., Nordemann, D.J.R., Prestes, A.: 2004, A comparison of the spectral characteristics of the Wolf sunspot number and group sunspot number. Solar Phys. 223, 305. DOI .

    Article  ADS  Google Scholar 

  • Friis-Christensen, E., Lassen, K.: 1991, Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698. DOI .

    Article  ADS  Google Scholar 

  • Gkana, A., Zachilas, L.: 2015, Sunspot numbers: data analysis, predictions and economic impacts. J. Eng. Sci. Technol. Rev. 8, 79. www.jestr.org/downloads/Volume8Issue1/fulltext148115.pdf .

    Google Scholar 

  • Grassberger, P., Procaccia, I.: 1983a, Characterization of strange attractors. Phys. Rev. Lett. 50, 346. DOI .

    Article  ADS  MathSciNet  Google Scholar 

  • Grassberger, P., Procaccia, I.: 1983b, Measuring the strangeness of strange attractors. Physica D 9, 189. DOI .

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1992, A new look at Wolf sunspot numbers in the late 1700’s. Solar Phys. 138, 387. DOI .

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189. DOI .

    Article  ADS  Google Scholar 

  • Kantz, H.: 1994, A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77. DOI .

    Article  ADS  Google Scholar 

  • Kennel, M.B., Brown, R., Abarbanel, H.D.I.: 1992, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403. DOI .

    Article  ADS  Google Scholar 

  • Lean, J.L., Rind, D.H.: 2008, How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, L18701. DOI .

    Article  ADS  Google Scholar 

  • Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., et al.: 2009, Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326, 1256. DOI .

    Article  ADS  Google Scholar 

  • Maunder, E.W.: 1922, The prolonged sunspot minimum 1675 – 1715. J. Br. Astron. Assoc. 32, 140.

    Google Scholar 

  • Muscheler, R., Beer, J., Kubik, P.W.: 2004, Long-term solar variability and climate change based on radionuclide data from ice cores. In: Pap, J.M., Fox, P., Frohlich, C., Hudson, H.S., Kuhn, J., McCormack, J., et al. (eds.) Solar Variability and Its Effects on Climate, Washington, D.C. DOI .

    Google Scholar 

  • Pesnell, W.D.: 2012, Solar cycle predictions (Invited review). Solar Phys. 281, 507. DOI .

    ADS  Google Scholar 

  • Reid, G.C.: 1987, Influence of solar variability on global sea surface temperatures. Nature 329, 142. DOI .

    Article  ADS  Google Scholar 

  • Rigozo, N.R., Nordemann, D.J.R., Echer, E., Echer, M.P.S., Silva, H.E.: 2010, Prediction of solar minimum and maximum epochs on the basis of spectral characteristics for the next millennium. Planet. Space Sci. 58, 1971. DOI .

    Article  ADS  Google Scholar 

  • Rosenstein, M.T., Collins, J.J., De Luca, C.J.: 1993, A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117. DOI .

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Schatten, K.H.: 2003, Solar activity and the solar cycle. Adv. Space Res. 32, 451. DOI .

    Article  ADS  Google Scholar 

  • Schwabe, A.N.: 1844, Sonnen-Beobachtungen im Jahre 1843. Astron. Nachr. 21, 233.

    Article  ADS  Google Scholar 

  • Spörer, F.W.G.: 1887, Über die Periodizität der Sonnenflecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, und Hinweis auf eine erhebliche Störung dieser Periodizität während eines langen Zeitraumes. Vjschr. Astron. Ges. Leipzig 22, 323.

    Google Scholar 

  • Sprott, J.C.: 2003, Chaos and Time Series Analysis, Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Stuiver, M., Braziunas, T.F.: 1989, Atmospheric 14C and century-scale solar oscillations. Nature 338, 405. DOI .

    Article  ADS  Google Scholar 

  • Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot Cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104. DOI .

    ADS  Google Scholar 

  • Takens, F., Ruelle, D.: 1971, On the nature of turbulence. Commun. Math. Phys. 20, 167. DOI .

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Usoskin, I.G., Solanki, S.K., Schüssler, M.: 2003, Millennium scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940s. Phys. Rev. Lett. 91, 211101. DOI .

    Article  ADS  Google Scholar 

  • Waldmeier, M.: 1935, Neue Eigenschaften der Sonnenfleckenkurve. Astron. Mitt. Eidgenöss. Sternwarte Zür. 14, 105.

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank J.H. Seiradakis for introducing us to Hoyt and Schatten’s (1998) solar-activity reconstruction and for constructive suggestions. We would also like to thank J.M. Pasachoff for providing the Maunder (1922) article and for some fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zachilas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zachilas, L., Gkana, A. On the Verge of a Grand Solar Minimum: A Second Maunder Minimum?. Sol Phys 290, 1457–1477 (2015). https://doi.org/10.1007/s11207-015-0684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-015-0684-1

Keywords

Navigation