Advertisement

Solar Physics

, Volume 290, Issue 5, pp 1457–1477 | Cite as

On the Verge of a Grand Solar Minimum: A Second Maunder Minimum?

  • L. Zachilas
  • A. Gkana
Article

Abstract

We analyze the yearly mean sunspot-number data covering the period 1700 to 2012. We show that the yearly sunspot number is a low-dimensional deterministic chaotic system. We perform future predictions trying to forecast the solar activity during the next five years (2013 – 2017). We provide evidence that the yearly sunspot-number data can be used for long-term predictions. To test and prove that our model is able to predict the Maunder Minimum period (1645 – 1715), we perform long-term post-facto predictions comparing them with the observed sunspot-number values. We also perform long-term future predictions trying to forecast the solar activity up to 2102. Our predictions indicate that the present Cycle 24 is expected to be a low-peak cycle. We conclude that the level of solar activity is likely to be reduced significantly during the next 90 years, somewhat resembling the Maunder Minimum period.

Keywords

Yearly sunspot number Grand solar minimum Maunder Minimum, solar activity predictions Deterministic chaos 

Notes

Acknowledgements

We would like to thank J.H. Seiradakis for introducing us to Hoyt and Schatten’s (1998) solar-activity reconstruction and for constructive suggestions. We would also like to thank J.M. Pasachoff for providing the Maunder (1922) article and for some fruitful suggestions.

References

  1. Ahluwalia, H.S.: 2003, Meandering path to solar activity forecast for Cycle 23. In: Velli, M., Bruno, R., Malara, F. (eds.) AIP Conf. Proc. CP679, Pisa, Italy, 176.  DOI. CrossRefGoogle Scholar
  2. Badalyan, O.G., Obridko, V.N., Sykora, J.: 2001, Brightness of the coronal green line and prediction for activity cycles 23 and 24. Solar Phys. 199, 421.  DOI. CrossRefADSGoogle Scholar
  3. Clilverd, M.A., Clarke, E., Rishbeth, H., Clark, T.D.G., Ulich, T.: 2003, Solar activity levels in 2100. Astron. Geophys. 44, 5.20.  DOI. CrossRefADSGoogle Scholar
  4. de Jager, C., Usoskin, I.: 2006, On possible drivers of Sun-induced climate changes. J. Atmos. Solar-Terr. Phys. 68, 2053.  DOI. CrossRefADSGoogle Scholar
  5. de Meyer, F.: 2003, A transfer function model for the sunspot cycle. Solar Phys. 217, 349.  DOI. CrossRefADSGoogle Scholar
  6. Eddy, J.A.: 1976, The Maunder Minimum. Science 192, 1189.  DOI. CrossRefADSGoogle Scholar
  7. Fraser, A.M., Swinney, H.L.: 1986, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134.  DOI. CrossRefADSMATHMathSciNetGoogle Scholar
  8. Faria, H.H., Echer, E., Rigozo, R., Vieira, L.E.A., Nordemann, D.J.R., Prestes, A.: 2004, A comparison of the spectral characteristics of the Wolf sunspot number and group sunspot number. Solar Phys. 223, 305.  DOI. CrossRefADSGoogle Scholar
  9. Friis-Christensen, E., Lassen, K.: 1991, Length of the solar cycle: an indicator of solar activity closely associated with climate. Science 254, 698.  DOI. CrossRefADSGoogle Scholar
  10. Gkana, A., Zachilas, L.: 2015, Sunspot numbers: data analysis, predictions and economic impacts. J. Eng. Sci. Technol. Rev. 8, 79. www.jestr.org/downloads/Volume8Issue1/fulltext148115.pdf. Google Scholar
  11. Grassberger, P., Procaccia, I.: 1983a, Characterization of strange attractors. Phys. Rev. Lett. 50, 346.  DOI. CrossRefADSMathSciNetGoogle Scholar
  12. Grassberger, P., Procaccia, I.: 1983b, Measuring the strangeness of strange attractors. Physica D 9, 189.  DOI. CrossRefADSMATHMathSciNetGoogle Scholar
  13. Hoyt, D.V., Schatten, K.H.: 1992, A new look at Wolf sunspot numbers in the late 1700’s. Solar Phys. 138, 387.  DOI. CrossRefADSGoogle Scholar
  14. Hoyt, D.V., Schatten, K.H.: 1998, Group sunspot numbers: a new solar activity reconstruction. Solar Phys. 179, 189.  DOI. CrossRefADSGoogle Scholar
  15. Kantz, H.: 1994, A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77.  DOI. CrossRefADSGoogle Scholar
  16. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: 1992, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403.  DOI. CrossRefADSGoogle Scholar
  17. Lean, J.L., Rind, D.H.: 2008, How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys. Res. Lett. 35, L18701.  DOI. CrossRefADSGoogle Scholar
  18. Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., et al.: 2009, Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326, 1256.  DOI. CrossRefADSGoogle Scholar
  19. Maunder, E.W.: 1922, The prolonged sunspot minimum 1675 – 1715. J. Br. Astron. Assoc. 32, 140. Google Scholar
  20. Muscheler, R., Beer, J., Kubik, P.W.: 2004, Long-term solar variability and climate change based on radionuclide data from ice cores. In: Pap, J.M., Fox, P., Frohlich, C., Hudson, H.S., Kuhn, J., McCormack, J., et al. (eds.) Solar Variability and Its Effects on Climate, Washington, D.C.  DOI. Google Scholar
  21. Pesnell, W.D.: 2012, Solar cycle predictions (Invited review). Solar Phys. 281, 507.  DOI. ADSGoogle Scholar
  22. Reid, G.C.: 1987, Influence of solar variability on global sea surface temperatures. Nature 329, 142.  DOI. CrossRefADSGoogle Scholar
  23. Rigozo, N.R., Nordemann, D.J.R., Echer, E., Echer, M.P.S., Silva, H.E.: 2010, Prediction of solar minimum and maximum epochs on the basis of spectral characteristics for the next millennium. Planet. Space Sci. 58, 1971.  DOI. CrossRefADSGoogle Scholar
  24. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: 1993, A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117.  DOI. CrossRefADSMATHMathSciNetGoogle Scholar
  25. Schatten, K.H.: 2003, Solar activity and the solar cycle. Adv. Space Res. 32, 451.  DOI. CrossRefADSGoogle Scholar
  26. Schwabe, A.N.: 1844, Sonnen-Beobachtungen im Jahre 1843. Astron. Nachr. 21, 233. CrossRefADSGoogle Scholar
  27. Spörer, F.W.G.: 1887, Über die Periodizität der Sonnenflecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, und Hinweis auf eine erhebliche Störung dieser Periodizität während eines langen Zeitraumes. Vjschr. Astron. Ges. Leipzig 22, 323. Google Scholar
  28. Sprott, J.C.: 2003, Chaos and Time Series Analysis, Oxford University Press, Oxford. MATHGoogle Scholar
  29. Stuiver, M., Braziunas, T.F.: 1989, Atmospheric 14C and century-scale solar oscillations. Nature 338, 405.  DOI. CrossRefADSGoogle Scholar
  30. Svalgaard, L., Cliver, E.W., Kamide, Y.: 2005, Sunspot Cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104.  DOI. ADSGoogle Scholar
  31. Takens, F., Ruelle, D.: 1971, On the nature of turbulence. Commun. Math. Phys. 20, 167.  DOI. CrossRefADSMATHMathSciNetGoogle Scholar
  32. Usoskin, I.G., Solanki, S.K., Schüssler, M.: 2003, Millennium scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940s. Phys. Rev. Lett. 91, 211101.  DOI. CrossRefADSGoogle Scholar
  33. Waldmeier, M.: 1935, Neue Eigenschaften der Sonnenfleckenkurve. Astron. Mitt. Eidgenöss. Sternwarte Zür. 14, 105. ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of ThessalyVolosGreece

Personalised recommendations