Skip to main content
Log in

High Speed Stream Properties and Related Geomagnetic Activity During the Whole Heliosphere Interval (WHI): 20 March to 16 April 2008

  • The Sun–Earth Connection near Solar Minimum
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We study the interplanetary features and concomitant geomagnetic activity of the two high-speed streams (HSSs) selected by the Whole Heliosphere Interval (WHI) campaign participants: 20 March to 16 April 2008 in Carrington rotation (CR) 2068. This interval was chosen to perform a comprehensive study of HSSs and their geoeffectiveness during this “deep” solar minimum. The two HSSs within the interval were characterized by fast solar-wind speeds (peak values > 600 km s−1) containing large-amplitude Alfvénic fluctuations, as is typical of HSSs during normal solar minima. However, the interplanetary magnetic field (IMF) magnitude [B o] was exceptionally low (≈3 – 5 nT) during these HSSs, leading to lower than usual IMF B z values. The first HSS (HSS1) had favorable IMF polarity for geomagnetic activity (negative during northern Spring). The average AE and Dst for the HSS1 proper (HSS1P) were + 258 nT and − 21 nT, respectively. The second HSS (HSS2) had a positive sector IMF polarity, one that is less favorable for geomagnetic activity. The AE and Dst index averages were + 188 nT and − 7 nT, both lower than corresponding numbers for the first event, as expected. The HSS1P geomagnetic activity is comparable to, and the HSS2P geomagnetic activity lower than, corresponding observations for the previous minimum (1996). Both events’ geomagnetic activities are lower than HSS events previously studied in the declining phase (in 2003). In general, V sw was faster for the HSSs in 2008 compared to 1996. The southward IMF B z was lower in the former. The product of these two parameters [V sw and IMF B z ] comprises the solar-wind electric field, which is most directly associated with the energy input into the magnetosphere during the HSS intervals. Thus the combined effects led to the solar wind energy input in 2008 being slightly less than that in 1996. A detailed analysis of magnetic-field variances and Alfvénicity is performed to explore the characteristics of Alfvén waves (a central element in the geoeffectiveness of HSSs) during the WHI. The B z variances in the proto-CIR (PCIR) were ≈ 30 nT2 and < 10 nT2 in the high speed streams proper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.-I.:, 1981, Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 28, 121.

    Article  ADS  Google Scholar 

  • Alves, M.V., Echer, E., Gonzalez, W.D.: 2006, Geoeffectiveness of corotating interaction regions as measured by Dst index. J. Geophys. Res. 111, A07S05.

    Article  Google Scholar 

  • Balogh, A., Bothmer, V., Crooker, N.U., Forsyth, R.J., Gloeckler, G., Hewish, A., Hilchenbach, M., Kallenbach, R., Klecker, B., Linker, J.A., Lucek, E., Mann, G., Marsch, E., Posner, A., Richardson, I.G., Schmidt, J.M., Scholer, M., Wang, Y.M., Wimmer-Schweingruber, R.F., Aellig, M.R., Bochsler, P., Hefti, S., Mikic, Z.: 1999, The solar origin of corotating interaction regions and their formation in the inner heliosphere – Report of Working Group 1. Space Sci. Rev. 89, 141.

    Article  ADS  Google Scholar 

  • Belcher, J.W., Davis, L. Jr.: 1971, Large amplitude Alfven waves in the interplanetary medium, 2. J. Geophys. Res. 76, 3534.

    Article  ADS  Google Scholar 

  • Bisi, M.M., Jackson, B.V., Buffington, A., Clover, J.M., Hick, P.P., Tokumaru, M.: 2009, Low-resolution STELab IPS 3D reconstructions of the whole heliosphere interval and comparison with in-ecliptic solar wind measurements from STEREO and Wind instrumentation. Solar Phys. 256, 201.

    Article  ADS  Google Scholar 

  • De Lucas, A., Gonzalez, W.D., Echer, E., Guarnieri, F.L., Dal Lago, A., da Silva, M.R., Vieira, L.E.A., Schuch, N.J.: 2007, Energy balance during intense and super-intense magnetic storms using an Akasofu ε parameter corrected by the solar wind dynamic pressure. J. Atmos. Solar-Terr. Phys. 69, 1851.

    Article  ADS  Google Scholar 

  • De Toma, G.: 2011, Evolution of corona holes and implication for high-speed solar wind during the minimum between cycles 23 and 24. Solar Phys. doi: 10.1007/s11207-010-9677-2 .

    Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic fields and the auroral zones. Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Alves, M.V.: 2006, On the geomagnetic effects of solar wind interplanetary magnetic structures. Space Weather 4, S06001. doi: 10.1029/2005SW0002000 .

    Article  Google Scholar 

  • Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2011, On the cause of lowest levels in geomagnetic activity in the space age. Adv. Space Res., submitted.

  • Echer, E., Gonzalez, W.D., Guarnieri, F.L., Dal Lago, A., Vieira, L.E.A.: 2005, Introduction to space weather. Adv. Space Res. 35, 855.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (Dst<− 100 nT) during solar cycle 23 (1996 C2006). J. Geophys. Res. 113.

  • Emery, B.A., Richardson, I.G., Evans, D.S., Rich, R.J., Xu, W.: 2009, Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles. J. Atmos. Solar-Terr. Phys. 71, 1157 – 1175. doi: 10.1016/j.jastp.2008.08.2005 .

    Article  Google Scholar 

  • Gibson, S.E., Kozyra, J.U., de Toma, G., Emery, B.A., Onsager, T., Thompson, B.J.: 2009, If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals. J. Geophys. Res. 114, A09105. doi: 10.1029/2009JA014342 .

    Article  Google Scholar 

  • Gonzalez, W.D.: 1990, A unified view of solar wind-magnetosphere coupling functions. Planet. Space Sci. 38, 627.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Tsurutani, B.T., Clua de Gonzalez, A.L.: 1999, Interplanetary origin of geomagnetic storms. Space Sci. Rev. 88, 529.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771.

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Guarnieri, F.L., Clua-Gonzalez, A.L., Echer, E., Alves, M.V., Ogino, T., Tsurutani, B.T.: 2006, Magnetospheric energetic during HILDCAAs. In: Tsurutani, B.T., McPherron, R., Gonzalez, W., Lu, G., Sobral, J.H.A., Gopalswamy, N. (eds.) Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. 167, AGU, Washington, 175.

    Chapter  Google Scholar 

  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.T.: 2007, Interplanetary origin of intense geomagnetic storms (Dst<− 100 nT) during solar cycle 23. Geophys. Res. Lett. 34, L06101. doi: 10.1029/2006GL028879 .

    Article  Google Scholar 

  • Gopalswamy, N., Thompson, W.T., Davila, J.M., Kaiser, M.L., Yashiro, S., Makela, P., Michalek, G., Bougeret, J.-L., Howard, R.A.: 2009, Relation between type II bursts and CMEs inferred from STEREO observation. Solar Phys. 259, 227.

    Article  ADS  Google Scholar 

  • Guarnieri, F.L., Tsurutani, B.T., Gonzalez, W.D., Echer, E., Gonzalez, A.L., Grande, M., Soraas, F.: 2006a, ICME and CIR storms with particular emphasis on HILDCAA events. In: Gopalswamy, N. (ed.) Proc. ILWS Workshop, Solar Influence on the Heliosphere and Earth’s Environment: Recent Progress and Prospects, Quest, Mumbai, 21.

    Google Scholar 

  • Guarnieri, F.L., Tsurutani, B.T., Echer, E., Gonzalez, W.D.: 2006b, Geomagnetic activity and auroras caused by high-speed streams: A review. In: Adv. Geosci. 8, Solar-Terrestrial, 91.

    Google Scholar 

  • Hathaway, D.H.: 2010, The solar cycle. Living Rev. Solar Phys. 7. http://solarphysics.livingreviews.org .

  • Issaultier, K., Le Chat, G., Meyer-Vernet, N., Moncuquet, M., Hoang, S., MacDowall, R.J., McComas, D.J.: 2008, Electron properties of high-speed solar wind from polar coronal holes obtained by Ulysses thermal noise spectroscopy: Not so dense, not so hot. Geophys. Res. Lett. 35, L19101. doi: 10.1029/2008GL034912 .

    Article  ADS  Google Scholar 

  • Kamide, Y., Baumjohann, W., Daglis, I.A., Gonzalez, W.D., Grande, M., Joselyn, J.A., McPherron, R.L., Phillips, J.L., Reeves, E.G.D., Rostoker, G., Sharma, A.S., Singer, H.J., Tsurutani, B.T., Vasyliunas, V.M.: 1998, Current understanding of magnetic storms: Storm-substorm relationships. J. Geophys. Res. 103, 17705.

    Article  ADS  Google Scholar 

  • Keller, C.U.: 2001, The SOLIS vector-spectromagnetograph (VSM). In: 20th International Sacramento Peak Summer Workshop, Advanced Solar Polarimetry-Theory, Observations and Instrumentation CS-236, Astron. Soc. Pacific, San Francisco, 16.

    Google Scholar 

  • Kozyra, J.U., Crowley, G., Emery, B.A., Fang, X., Maris, G., Mlynczak, M.G., Niciejewski, R.J., Palo, S.E., Paxton, L.J., Randal, C.E., Rong, P.-P., Russell, J.M. III, Skinner, W., Solomon, S.C., Talaat, E.R., Wu, Q., Yee, J.-H.: 2006, Response of the upper/middle atmosphere to coronal holes and powerful high speed solar wind streams in 2003. In: Tsurutani, B.T., McPherron, R., Gonzalez, W., Lu, G., Sobral, J.H.A., Gopalswamy, N. (eds.) Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. 167, AGU, Washington, 319.

    Chapter  Google Scholar 

  • Krieger, A.S., Timothy, A.F., Roelof, E.C.: 1973, A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Phys. 23, 123.

    Google Scholar 

  • Landi, E., Raymond, J.C., Miralles, M.P., Hara, H.: 2009, Physical conditions in a CME from Hinode, STEREO and SOHO observations. Astrophys. J. 695, 221.

    Article  ADS  Google Scholar 

  • Lee, C.O., Luhmann, J.G., Zhao, X.P., Liu, Y., Riley, P., Arge, C.N., Russell, C.T., de Pater, I.: 2009, Effects of the weak polar fields of solar cycle 23: Investigation using OMNI for the STEREO mission period. Solar Phys. 256, 345. doi: 10.1007/s11207-009-9345-6 .

    Article  ADS  Google Scholar 

  • Luhmann, J.G., Lee, C.O., Li, Y., Arge, C.N., Galvin, A.B., Simunac, K., Russell, C.T., Howard, R.A., Petrie, G.: 2009, Solar wind sources in the late declining phase of cycle 23: Effects of the weak solar polar field on high speed streams. Solar Phys. 256, 285. doi: 10.1007/s11207-009-9354-5 .

    Article  ADS  Google Scholar 

  • Maris, G., Maris, O.: 2010, Highlights Astron. 15, Cambridge U. Press, 494.

  • McComas, D.J., Bame, S.J., Baker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W.: 1998, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563 – 612.

    Article  ADS  Google Scholar 

  • McComas, D.J., Barraclough, B.L., Funsten, H.O., Gosling, J.T., Santiago-Munoz, E., Skoug, R.M., Goldstein, B.E., Neugebauer, M., Riley, P., Balogh, A.: 2000, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419.

    Article  ADS  Google Scholar 

  • McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., Skoug, R.M.: 2008, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, L18103. doi: 10.1029/2008GL034896 .

    Article  ADS  Google Scholar 

  • Perrault, P.D., Akasofu, S.-I.: 1978, A study of geomagnetic storms. Geophys. J. Roy. Astron. Soc. 54, 547.

    Article  ADS  Google Scholar 

  • Pizzo, V.J.: 1985, Interplanetary shocks on the large scale: A retrospective on the last decade’s theoretical efforts. In: Tsurutani, B.T., Stone, R.G. (eds.) Collisionless Shocks in the Heliosphere, Reviews of Current Research, Geophys. Monogr. 35, AGU, Washington, 51.

    Chapter  Google Scholar 

  • Richardson, I.G., Cliver, E., Cane, H.V.: 2000, Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams and slow solar wind. J. Geophys. Res. 105, 18203 – 18213.

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): Catalog and summary of properties. Solar Phys. 264, 189. doi: 10.1007/s11207-010-9568-6 .

    Article  ADS  Google Scholar 

  • Rostoker, G.: 1972, Geomagnetic indices. Rev. Geophys. 10, 935.

    Article  ADS  Google Scholar 

  • Russell, C.T.: 1971, Geophysical coordinate transformations. Cosm. Electrodyn. 2, 184.

    Google Scholar 

  • Russell, C.T., McPherron, R.L.: 1973, Semiannual variation of geomagnetic activity. J. Geophys. Res. 78, 92.

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Harvey, J.W., Feldman, W.C.: 1976, Coronal holes, solar wind streams and recurrent geomagnetic disturbances: 1973 – 1976. Solar Phys. 49, 271.

    Article  ADS  Google Scholar 

  • Smith, E.J., Wolfe, J.H.: 1976, Observations of interaction regions and corotating shocks between one and 5 AU-PIONEER-10 and PIONEER-11. Geophys. Res. Lett. 3, 137.

    Article  ADS  Google Scholar 

  • Smith, E.J., Balogh, A.: 2008, Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, L22103. doi: 10.1029/2008GL035345 .

    Article  ADS  Google Scholar 

  • Smith, C.W., Acuna, M.H., Burlaga, L.F., L’Heureux, J., Ness, N.F., Scheifele, J.: 1998, The ACE magnetic field experiment. Space Sci. Rev. 86, 613.

    Article  ADS  Google Scholar 

  • Tokumaru, M., Kojima, M., Fujiki, K., Hayashi, K.: 2009, Non-dipolar solar wind structure observed in the cycle 23/24 minimum. Geophys. Res. Lett. 36, L09101. doi: 10.1029/2009GL037461 .

    Article  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfven wave trains. Planet. Space Sci. 35, 405.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Smith, E.J., Pyle, K.R., Simpson, J.A.: 1982, Energetic protons accelerated at corotating shocks: Pioneer 10 and 11 observations from 1 to 6 AU. J. Geophys. Res. 87, 7389.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gould, T., Goldstein, B.E., Gonzalez, W.D., Sugiura, M.: 1990, Interplanetary Alfven waves and auroral (substorm) activity: IMP-8. J. Geophys. Res. 95, 2241.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Tang, F., Arballo, J.K., Okada, M.: 1995, Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle. J. Geophys. Res. 100, 21717.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Lakhina, G.S., Pickett, J.S., Guarnieri, F.L., Lin, N., Goldstein, B.E.: 2005, Nonlinear Alfvén waves, discontinuities, proton perpendicular acceleration, and magnetic holes/decreases in interplanetary space and the magnetosphere: Intermediate shocks? Nonlinear Process. Geophys. 12, 321.

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D., Gonzalez, A.L.C., Guarnieri, F.L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., McPherron, R., Soraas, F., Vasyliunas, V.: 2006a, Corotating solar wind streams and recurrent geomagnetic activity: A review. J. Geophys. Res. 111, A07S01. doi: 10.1029/2005JA011273 .

    Article  Google Scholar 

  • Tsurutani, B.T., McPherron, R.L., Gonzalez, W.D., Lu, G., Gopalswamy, N., Guarnieri, F.L.: 2006b, Magnetic storms caused by corotating solar wind streams. In: Tsurutani, B.T., McPherron, R., Gonzalez, W., Lu, G., Sobral, J.H.A., Gopalswamy, N. (eds.) Recurrent Magnetic Storms, Corotating Solar Wind Streams, Geophys. Monogr. 167, AGU, Washington, 1.

    Chapter  Google Scholar 

  • Tsurutani, B.T., Echer, E., Guarnieri, F.L., Gonzalez, W.D.: 2011, The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23. J. Atmos. Solar-Terr. Phys. 73, 164.

    Article  Google Scholar 

  • Turner, N.E., Mitchell, E.J., Knipp, D.J., Emery, B.A.: 2006, Energetics of magnetic storms driven by corotating interaction regions: A study of geoeffectiveness. In: Tsurutani, B.T., McPherron, R., Gonzalez, W., Lu, G., Sobral, J.H.A., Gopalswamy, N. (eds.) Recurrent Magnetic Storms: Corotating Solar Wind Streams, Geophys. Monogr. 167, AGU, Washington, 113.

    Chapter  Google Scholar 

  • Wilcox, J.M., Ness, N.F.: 1965, Sector structure of quiet interplanetary magnetic field. Science 148, 1592.

    Article  ADS  Google Scholar 

  • Winterhalter, D., Smith, E.J., Burton, M.E., Murphy, N., McComas, D.J.: 1994, The heliospheric plasma sheet. J. Geophys. Res. 99, 6667.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Echer.

Additional information

The Sun–Earth Connection near Solar Minimum

Guest Editors: M.M. Bisi, B.A. Emery, and B.J. Thompson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echer, E., Tsurutani, B.T., Gonzalez, W.D. et al. High Speed Stream Properties and Related Geomagnetic Activity During the Whole Heliosphere Interval (WHI): 20 March to 16 April 2008. Sol Phys 274, 303–320 (2011). https://doi.org/10.1007/s11207-011-9739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9739-0

Keywords

Navigation