Skip to main content
Log in

A global numerical 3-D MHD model of the solar wind

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

A fully three-dimensional, steady-state global model of the solar corona and the solar wind is developed. A numerical, self-consistent solution for 3-D MHD equations is constructed for the region between the solar photosphere and the Earth's orbit. Boundary conditions are provided by the solar magnetic field observations. A steady-state solution is sought as a temporal relaxation to the dynamic equilibrium in the region of transonic flow near the Sun and then traced to the orbit of the Earth in supersonic flow region. The unique features of the proposed model are: (a) uniform coverage and self-consistent treatment of the regions of subsonic/sub-Alfvénic and supersonic/super-Alfvénic flows, (b) inferring the global structure of the interplanetary medium between the solar photosphere and 1 AU based on large-scale solar magnetic field data. As an experimental test for the proposed technique, photospheric magnetic field data for CR 1682 are used to prescribe boundary condition near the Sun and results of a simulation are compared with spacecraft measurements at 1 AU. The comparison demonstrates a qualitative agreement between computed and observed parameters. While the difference in densities is still significant, the 3-D model better reproduces variations of the solar wind velocity than does the 2-D model presented earlier (Usmanov, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brackbill, J. U. and Barnes, D. C.: 1980,J. Comp. Phys. 35, 426.

    Google Scholar 

  • Couzens, D. A. and King, J. H.: 1986,Interplanetary Medium Data Book - Supplement 3, 1977–1985, NSSDC/WDC-A-R&S 86–04.

  • Cuperman, S., Ofman, L., and Dryer, M.: 1990,Astrophys. J. 350, 846.

    Google Scholar 

  • Dryer, M., Smith, Z. K., and Wu, S. T.: 1988,Astrophys. Space Sci. 144, 407.

    Google Scholar 

  • Endler, F.: 1971,Interaction between the Solar Wind and Coronal Magnetic Fields, Max-Planck-Institut für Physik und Astrophysik, München, 36 p.

    Google Scholar 

  • Han, S. M., Wu, S. T., and Dryer, M.: 1988,Comp. Fluids 16, 81.

    Google Scholar 

  • Han, S. M., Panitchob, S., Wu, S. T., and Dryer, M.: 1984, inProceedings of the Southeastern Conference on Theoretical and Applied Mechanics, May 10–11, 1984, Auburn University, Vol. 2, p. 39.

    Google Scholar 

  • Hoeksema, J. T.: 1984, ‘Structure and Evolution of the Large-Scale Solar and Heliospheric Magnetic Fields’, Ph.D. Thesis, Rep. CSSA-ASTRO-84-07, Stanford Univ., Stanford, California.

    Google Scholar 

  • Hoeksema, J. T.: 1991,An Atlas of Photospheric Magnetic Field Observations and Computed Heliospheric Magnetic Fields from the John M. Wilcox Solar Observatory at Stanford, Vol. 2, 1985–1990, Center for Space Science and Astrophysics, Report CSSA-ASTRO-91-01.

  • Hoeksema, J. T. and Scherrer, P. H.: 1985,An Atlas of Photospheric Magnetic Field Observations and Computed Heliospheric Magnetic Fields from the John M. Wilcox Solar Observatory at Stanford 1976–1984, Rep. CSSA-ASTRO-85-11, Stanford Univ., Stanford, California.

    Google Scholar 

  • Lapidus, A.: 1967,J. Comp. Phys. 2, 154.

    Google Scholar 

  • Linker, J. A., Van Hoven, G., and Schnack, D. D.: 1990,Geophys. Res. Letters 17, 2281.

    Google Scholar 

  • Linker, J. A., Kivelson, M. G., and Walker, R. J.: 1991,J. Geophys. Res. 96, 21037.

    Google Scholar 

  • MacCormack, R. W.: 1971, in M. Holt (ed.), ‘Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics’,Lecture Notes in Physics 8, 151.

    Google Scholar 

  • Parker, E. N.: 1963,Interplanetary Dynamical Processes, Interscience, New York.

    Google Scholar 

  • Pisanko, Yu. V.: 1985a,Geomagn. Aeron. 25, 17.

    Google Scholar 

  • Pisanko, Yu. V.: 1985b,Geomagn. Aeron. 25, 371.

    Google Scholar 

  • Pizzo, V.: 1982,J. Geophys. Res. 87, 4374.

    Google Scholar 

  • Pneuman, G. W. and Kopp, R. A.: 1971,Solar Phys. 18, 258.

    Google Scholar 

  • Robertson, B. J.: 1983,Solar Phys. 83, 63.

    Google Scholar 

  • Sittler, E. C. and Scudder, J. D.: 1980,J. Geophys. Res. 85, 5131.

    Google Scholar 

  • Steinolfson, R. S. and Dryer, M.: 1984,Astrophys. Space Sci. 104, 111.

    Google Scholar 

  • Steinolfson, R. S., Suess, S. T., and Wu, S. T.: 1982,Astrophys. J. 255, 730.

    Google Scholar 

  • Usmanov, A. V.: 1993,Solar Phys 143, 345.

    Google Scholar 

  • Wang, S., Hu, Y., and Wu, S. T.: 1982,Scientia Sinica 25, No. 12, 1305.

    Google Scholar 

  • Washimi, H., Yoshino, Y., and Ogino, T.: 1987,Geophys. Res. Letters 14, 487.

    Google Scholar 

  • Weber, E. J. and Davis, L., Jr.: 1967,Astrophys. J. 148, 217.

    Google Scholar 

  • Wu, S. T. and Wang, Ai-Hwa: 1991,Adv. Space Res. 11(1), 187.

    Google Scholar 

  • Yeh, T. and Dryer, M.: 1985,Astrophys. Space Sci. 117, 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usmanov, A.V. A global numerical 3-D MHD model of the solar wind. Sol Phys 146, 377–396 (1993). https://doi.org/10.1007/BF00662021

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00662021

Keywords

Navigation