Skip to main content
Log in

A Comparison of Feature Classification Methods for Modeling Solar Irradiance Variation

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Physical understanding of total and spectral solar irradiance variation depends upon establishing a connection between the temporal variability of spatially resolved solar structures and spacecraft observations of irradiance. One difficulty in comparing models derived from different data sets is that the many ways for identifying solar features such as faculae, sunspots, quiet Sun, and various types of “network” are not necessarily consistent. To learn more about classification differences and how they affect irradiance models, feature “masks” are compared as derived from five current methods: multidimensional histogram analysis of NASA/National Solar Observatory/Kitt Peak spectromagnetograph data, statistical pattern recognition applied to SOHO/Michelson Doppler Imager photograms and magnetograms, threshold masks allowing for influence of spatial surroundings applied to NSO magnetograms, and “one-trigger” and “three-trigger” algorithms applied to California State University at Northridge Cartesian Full Disk Telescope intensity observations. In general all of the methods point to the same areas of the Sun for labeling sunspots and active-region faculae, and available time series of area measurements from the methods correlate well with each other and with solar irradiance. However, some methods include larger label sets, and there are important differences in detail, with measurements of sunspot area differing by as much as a factor of two. The methods differ substantially regarding inclusion of fine spatial scale in the feature definitions. The implications of these differences for modeling solar irradiance variation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, T.E., Rouppe van der Voort, L., Lofdahl, M.G.: 2005, High resolution magnetogram measurements of solar faculae. In: AGU Spring Meeting Abstracts, SP31 – A02.

  • Chapman, G.A., Cookson, A.M., Dobias, J.J.: 1996, Variations in total solar irradiance during solar cycle 22. J. Geophys. Res. 101, 13541 – 13548. doi:10.1029/96JA00683.

    Article  ADS  Google Scholar 

  • Chapman, G.A., Cookson, A.M., Dobias, J.J.: 1997, Solar variability and the relation of facular to sunspot areas during solar cycle 22. Astrophys. J. 482, 541 – 545. doi:10.1086/304138.

    Article  ADS  Google Scholar 

  • Chapman, G.A., Herzog, A.D., Lawrence, J.K., Walton, S.R., Hudson, H.S., Fisher, B.M.: 1992, Precise ground-based solar photometry and variations of total irradiance. J. Geophys. Res. 97, 8211 – 8219.

    Article  ADS  Google Scholar 

  • Cohen, J.: 1960, A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20, 37 – 46.

    Article  Google Scholar 

  • de Toma, G., White, O.R., Chapman, G.A., Walton, S.R., Preminger, D.G., Cookson, A.M., Harvey, K.L.: 2001, Differences in the Sun’s radiative output in cycles 22 and 23. Astrophys. J. 549, L131 – L134. doi:10.1086/319127.

    Article  ADS  Google Scholar 

  • de Toma, G., White, O.R., Chapman, G.A., Walton, S.R., Preminger, D.G., Cookson, A.M.: 2004, Solar cycle 23: an anomalous cycle? Astrophys. J. 609, 1140 – 1152. doi:10.1086/421104.

    Article  ADS  Google Scholar 

  • Fligge, M., Solanki, S.K.: 2000, The solar spectral irradiance since 1700. Geophys. Res. Lett. 27, 2157 – 2160. doi:10.1029/2000GL000067.

    Article  ADS  Google Scholar 

  • Fligge, M., Solanki, S.K., Unruh, Y.C.: 2000, Modelling irradiance variations from the surface distribution of the solar magnetic field. Astron. Astrophys. 353, 380 – 388.

    ADS  Google Scholar 

  • Foukal, P., Lean, J.: 1988, Magnetic modulation of solar luminosity by photospheric activity. Astrophys. J. 328, 347 – 357. doi:10.1086/166297.

    Article  ADS  Google Scholar 

  • Foukal, P., Bernasconi, P., Eaton, H., Rust, D.: 2004, Broadband measurements of facular photometric contrast using the solar bolometric imager. Astrophys. J. 611, L57 – L60. doi:10.1086/423787.

    Article  ADS  Google Scholar 

  • Fröhlich, C.: 2006, Solar irradiance variability since 1978. Space Sci. Rev. 125, 53 – 65. doi:10.1007/s11214-006-9046-5.

    Article  ADS  Google Scholar 

  • Fröhlich, C., Lean, J.: 1998, The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 25, 4377 – 4380. doi:10.1029/1998GL900157.

    Article  ADS  Google Scholar 

  • Harvey, K.L., White, O.R.: 1999, Magnetic and radiative variability of solar surface structures. I. Image decomposition and magnetic-intensity mapping. Astrophys. J. 515, 812 – 831. doi:10.1086/307035.

    Article  ADS  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: 1993, A discussion of plausible solar irradiance variations, 1700 – 1992. J. Geophys. Res. 98, 18895 – 18906.

    Article  ADS  Google Scholar 

  • Jones, H.P., Branston, D.D., Jones, P.B., Wills-Davey, M.J.: 2000, Analysis of NASA/NSO spectromagnetograph observations for comparison with solar irradiance variations. Astrophys. J. 529, 1070 – 1083. doi:10.1086/308315.

    Article  ADS  Google Scholar 

  • Jones, H.P., Branston, D.D., Jones, P.B., Popescu, M.D.: 2003, Comparison of total solar irradiance with NASA/National Solar Observatory spectromagnetograph data in solar cycles 22 and 23. Astrophys. J. 589, 658 – 664. doi:10.1086/374413.

    Article  ADS  Google Scholar 

  • Keller, C.U., Schüssler, M., Vögler, A., Zakharov, V.: 2004, On the origin of solar faculae. Astrophys. J. 607, L59 – L62. doi:10.1086/421553.

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K., Fligge, M., Unruh, Y.C.: 2003, Reconstruction of solar irradiance variations in cycle 23: is solar surface magnetism the cause? Astron. Astrophys. 399, L1 – L4. doi:10.1051/0004-6361:20030029.

    Article  ADS  Google Scholar 

  • Lean, J.: 2001, The variability of the Sun: from the visible to the X-rays (CD-ROM directory: contribs/lean). In: Garcia Lopez, R.J., Rebolo, R., Zapaterio Osorio, M.R. (eds.) 11th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, ASP 223, Astron. Soc. Pac., San Francisco, 109 – 116.

    Google Scholar 

  • Lean, J., Beer, J., Bradley, R.: 1995, Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195 – 3198. doi:10.1029/95GL03093.

    Article  ADS  Google Scholar 

  • Lean, J., Rottman, G., Harder, J., Kopp, G.: 2005, SORCE contributions to new understanding of global change and solar variability. Solar Phys. 230, 27 – 53. doi:10.1007/s11207-005-1527-2.

    Article  ADS  Google Scholar 

  • Pap, J.M.: 2003, Total solar and spectral irradiance variations from near-UV to infrared. In: Rozelot, J.P. (ed.) The Sun’s Surface and Subsurface: Investigating Shape, Lecture Notes in Physics 599, Springer, Berlin, 129 – 155.

    Google Scholar 

  • Pap, J.M., Turmon, M., Floyd, L., Fröhlich, C., Wehrli, C.: 2002, Total solar and spectral irradiance variations from solar cycles 21 to 23. Adv. Space Res. 29, 1923 – 1932.

    Article  ADS  Google Scholar 

  • Preminger, D.G., Walton, S.R., Chapman, G.A.: 2001, Solar feature identification using contrasts and contiguity. Solar Phys. 202, 53 – 62.

    Article  ADS  Google Scholar 

  • Preminger, D.G., Walton, S.R., Chapman, G.A.: 2002, Photometric quantities for solar irradiance modeling. J. Geophys. Res. 107, 1354 – 1362. doi:10.1029/2001JA009169.

    Article  Google Scholar 

  • Turmon, M., Pap, J.M., Mukhtar, S.: 2002, Statistical pattern recognition for labeling solar active regions: application to SOHO/MDI imagery. Astrophys. J. 568, 396 – 407. doi:10.1086/338681.

    Article  ADS  Google Scholar 

  • Wenzler, T., Solanki, S.K., Krivova, N.A., Fröhlich, C.: 2006, Reconstruction of solar irradiance variations in cycles 21 – 23 based on surface magnetic fields. Astron. Astrophys. 460, 583 – 595. doi:10.1051/0004-6361:20065752.

    Article  ADS  Google Scholar 

  • Willson, R.C., Hudson, H.S.: 1988, Solar luminosity variations in solar cycle 21. Nature 332, 810 – 812. doi:10.1038/332810a0.

    Article  ADS  Google Scholar 

  • Willson, R.C., Mordvinov, A.V.: 2003, Secular total solar irradiance trend during solar cycles 21 – 23. Geophys. Res. Lett. 30, 1199 – 1202.

    Article  ADS  Google Scholar 

  • Willson, R.C., Gulkis, S., Janssen, M., Hudson, H.S., Chapman, G.A.: 1981, Observations of solar irradiance variability. Science 211, 700 – 702.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Jones.

Additional information

K.L. Harvey and S.R. Walton are deseased, to whom this paper is dedicated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, H.P., Chapman, G.A., Harvey, K.L. et al. A Comparison of Feature Classification Methods for Modeling Solar Irradiance Variation. Sol Phys 248, 323–337 (2008). https://doi.org/10.1007/s11207-007-9069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-007-9069-4

Keywords

Navigation