Skip to main content
Log in

Geophysical evidence of the Eastern Marginal Fault of the Cheb Basin (Czech Republic)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The western part of the Bohemian Massif hosts an intersection of two regional fault zones, the SW-NE trending Ohře/Eger Graben and the NNW-SSE trending Mariánské Lázně Fault, which has been reactivated several times in the geological history and controlled the formation of the Tertiary Cheb Basin. The broader area of the Cheb Basin is also related to permanent seismic activity of ML 3+ earthquake swarms. The Eastern Marginal Fault of the Cheb Basin (northern segment of the Mariánské Lázně Fault) separates the basin sediments and underlying granites in the SW from the Krušné Hory/Erzgebirge Mts. crystalline unit in the NE. We describe a detailed geophysical survey targeted to locating the Eastern Marginal Fault and determining its geometry in the depth. The survey was conducted at the Kopanina site near the Nový Kostel focal zone, which shows the strongest seismic activity of the whole Western Bohemia earthquake swarm region. Complex geophysical survey included gravimetry, electrical resistivity tomography, audiomagnetotellurics and seismic refraction. We found that the rocks within the Eastern Marginal Fault show low resistivity, low seismic velocity and density, which indicates their deep fracturing, weathering and higher water content. The dip of the fault in shallow depths is about 60° towards SW. At greater depths, the slope turns to subvertical with dip angle of about 80°. Results of geoelectrical methods show blocky fabric of the Cheb Basin and deep weathering of the granite bedrock, which is consistent with geologic models based on borehole surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bankwitz P., Schneider G., Kämpf H. and Bankwitz E., 2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J. Geodyn., 35, 5–32, DOI: 10.1016/S0264-3707(02)00051-0.

    Article  Google Scholar 

  • Behr H.-J., Dürbaum H.-J. and Bankwitz P., 1994. Crustal structure of the Saxothuringian Zone: results of the deep seismic profile MVE-90 (East). Z. Geol. Wiss., 22, 647–770.

    Google Scholar 

  • Blecha V. and Štemprok M., 2012. Petrophysical and geochemical characteristics of late Variscan granites in the Karlovy Vary Massif (Czech Republic)-implications for gravity and magnetic interpretation at shallow depths. J. Geosci., 57, 65–85.

    Article  Google Scholar 

  • Blecha V., Štemprok M. and Fischer T., 2009. Geological interpretation of gravity profiles through the Karlovy Vary Granite Massif (Czech Republic). Stud. Geophys. Geod., 53, 295–314.

    Article  Google Scholar 

  • Blížkovský M., Čejchanová B., Friáková O., Hanák J., Kadlec E., Mitrenga P., Novák M., Novotný A., Ondra P. and Švancara J., 1981. Construction of the Stripped Gravity Map of the Bohemian Massif on the Basis of Revision of Density Data, Part II. Density Data on the Bohemian Massif on the Territory of ČSR. Geofyzika n.p., Brno; Czech Geological Survey-Geofond, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Bräuer K., Kämpf H., Niedermann S. and Strauch G., 2005. Evidence for ascending upper mantlederived melt beneath the Cheb Basin, central Europe. Geophys. Res. Lett., 32, L08303, DOI: 10.1929/2004GL022205.

    Google Scholar 

  • Breiter K., 2012. Nearly contemporaneous evolution of the A-and S-type fractionated granites in the Krušné hory/Erzgebirge Mts, Central Europe. Lithos, 151, 105–121.

    Article  Google Scholar 

  • Edwards L.S., 1977. A modified pseudosection for resistivity and IP. Geophysics, 42, 1020–1046.

    Article  Google Scholar 

  • Fischer T., Štěpančíková P., Karousová M., Tábořík P., Flechsig C. and Gaballah M., 2012. Imaging the Mariánské Lázně Fault (Czech Republic) by 3-D ground-penetrating radar and electric resistivity tomography. Stud. Geophys. Geod., 56, 1019–1036, DOI: 10.1007/s11200-012-0825-z.

    Article  Google Scholar 

  • Fischer T., Horálek J., Hrubcová P., Vavryčuk V., Bräuer K. and Kämpf H., 2014. Intra-continental earthquake swarms in West-Bohemia and Vogtland: a review. Tectonophysics, 611, 1–27, DOI: 10.1016/j.tecto.2013.11.001.

    Article  Google Scholar 

  • Flechsig C., Fabig T., Rücker C. and Schütze C., 2010. Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure. Stud. Geophys. Geod., 54, 443–463.

    Article  Google Scholar 

  • Friedrichs B., 2004, Mapros, Ver. 0.87b freeware, https://www.geo-metronix.de/mtxgeo/images/wiki/Software/mapros_07/Setup.zip.

    Google Scholar 

  • GM-SYS Modelling, 2017. http://www.geosoft.com/products/gm-sys.

  • Günther T., Rücker C. and Spitzer K., 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-II. Inversion. Geophys. J. Int., 166, 506–517.

    Article  Google Scholar 

  • Guy A., Edel J.B., Schulmann K., Tomek Č. and Lexa O., 2011. A geophysical model of the Variscan orogenic root (Bohemian Massif): implications for modern collisional orogens. Lithos, 124, 144–157.

    Article  Google Scholar 

  • Halpaap F., Paschke M. and Bleibinhaus F., 2018. Shallow Reflection Seismic Evidence of Tectonic Activity in the Cheb Basin, NW Bohemia. Stud. Geophys. Geod., 62, 80–101, DOI: 10.1007/s11200-016-0386-7.

    Article  Google Scholar 

  • Hansen P.Ch. and O’Leary D., 1993. The use of the L-curve in the regularization of discrete illposed problems. SIAM J. Sci. Comput., 14, 1487–1503.

    Article  Google Scholar 

  • Hecht L., Vigneresse J.-L. and Morteani G., 1997. Constraints on the origin of zonation of the granite complexes in the Fichtelgebirge (Germany and Czech Republic): evidence from a gravity and geochemical study. Geol. Rundsch., 86, S93–S109.

    Article  Google Scholar 

  • Hofmann I., Jahr T. and Jentzsch G., 2003. Three-dimensional gravimetric modelling to detect deep structure of the region Vogtland/NW-Bohemia. J. Geodyn., 35, 209–220.

    Article  Google Scholar 

  • Hrouda F. and Chlupáčová M., 1993. A petrophysical study, part II: densities, magnetic properties, elasticity and radioactivity. In: Vrána S. and Štědrá V. (Eds), Geological Model of Western Bohemia in Relation to the Deep Borehole (KTB-1) in FRG. Czech Geological Survey-Geofond, Prague, Czech Republic.

    Google Scholar 

  • Kolářová M., 1965. Hydrogeology of the Cheb Basin. J. Geol. Sci. (Hydrogeol.), 3, 7–101 (in Czech with English abstract).

    Google Scholar 

  • Krawczyk C.M., Stein E., Choi S., Oetinger G., Schuster K., Götze H.-J., Haak V., Oncken O., Prodehl C. and Schulze, A., 2000. Geophysical constraints on exhumations mechanism of high-pressure rocks: the Saxo-Thuringian case between the Franconian Line and Elbe Zone. In: Franke W., Haak V., Oncken O. and Tanner, D. (Eds), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol. Soc. London Spec. Publ., 179, 303–322.

    Google Scholar 

  • Loke M.H., 1997. Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys. http://www.geotomosoft.com/.

    Google Scholar 

  • Malkovský M., 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137, 31–42.

    Article  Google Scholar 

  • Mlčoch B., Bezděková Š, Breiter K., Čápová D., Fifernová M., Holub F.V., Jelenová M., Jeřábek P., Rapprich V., Sedláček J. and Skácelová Z., 2008. 3D Modeling of the Bedrock Relief of the Cheb and Sokolov Basins. Czech Geological Survey-Geofond, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Mrlina J., Kämpf H., Kroner C., Mingram J., Stebich M., Bräuer A., Geissler W.H., Kallmeyer J., Matthes H. and Seidl M., 2009. Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. J. Volcanol. Geotherm. Res., 182, 97–112, DOI: 10.1016/j.jvolgeores.2009.01.027.

    Article  Google Scholar 

  • Pazdírek O. and Bláha V., 1996. Examples of resistivity imaging using ME-100 resistivity field acquisition system. Extended Abstract. 58th EAGE Conference and Exhibition, DOI: 10.3997/2214-4609.201408817.

    Google Scholar 

  • Pek J., Santos F. A. M. and Li Y., 2012. Non-linear conjugate gradient magnetotelluric inversion for 2-D anisotropic conductivities. In: Börner R.-U. and Schwalenberg K. (Eds), Proceedings of the 24-th Schmucker-Weidelt Colloqium “Electromagnetic Depth Investigations”, Neustadt an der Weinstraße, 19.-23. September 2011. Deutsche Geophysikalische Gesellschaft, Hamburg, Germany, 187–206.

    Google Scholar 

  • Peterek A., Reuther C.D. and Schunk R., 2011. Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift. Z. Geol. Wiss., 39, 335–365.

    Google Scholar 

  • Rücker C., Günther T. and Spitzer K., 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-I. Modelling. Geophys. J. Int., 166, 495–505.

    Article  Google Scholar 

  • Sedlák J., Gnojek I., Scheibe R. and Zabadal S., 2009. Gravity response of igneous rocks in the northwestern part of the Bohemian Massif. J. Geosci., 54, 325–342.

    Google Scholar 

  • Simpson F. and Bahr K., 2005. Practical Magnetotellurics. Cambridge University Press, Cambridge, U.K., 272 pp.

    Book  Google Scholar 

  • Špičáková L., Uličný D. and Koudelková G., 2000. Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between Late Oligocene and Pliocene: a preliminary note. Stud. Geophys. Geod., 44, 556–580.

    Article  Google Scholar 

  • Štemprok M., 1986. Petrology and geochemistry of the Czechoslovak part of the Krušné Hory Mts. granite pluton. Sbor. Geol. Věd Lož. Geol. Mineral., 27, 111–156.

    Google Scholar 

  • Štemprok M. and Blecha V., 2015. Variscan Sn-W-Mo metallogeny in the gravity picture of the Krušné Hory/Erzgebirge granite batholith (Central Europe). Ore Geol. Rev., 69, 285–300.

    Article  Google Scholar 

  • Štěpančíková P., Tábořík P., Fischer T., Hartvich F., Karousová M., Stemberk J. and Nováková L., 2015. Holocene activity of the Mariánské Lázně Fault (Cheb basin, Bohemian Massif): youngest proved surface faulting in central Europe? In: Blumetti A.M., Cinti F.R., De Martini P.M., Galadini F., Guerrieri L., Michetti A.M., Pantosti D. and Vittori E. (Eds), 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archaeoseismology, 19–24 April 2015, Pescina, Fucino Basin, Italy. Miscellanea INGV, 27 478–480.

    Google Scholar 

  • Švancara J., Havíř J. and Conrad W., 2008. Derived gravity field of the seismogenic upper crust of SE Germany and West Bohemia and its comparison with seismicity. Stud. Geophys. Geod., 52, 567–588.

    Article  Google Scholar 

  • Swift C.M., 1967. A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the South Western United States. Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Tomek Č., Dvořáková V. and Vrána, S., 1997. Geological interpretation of the 9HR and 503M seismic profiles in Western Bohemia. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci., 47, 43–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vratislav Blecha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blecha, V., Fischer, T., Tábořík, P. et al. Geophysical evidence of the Eastern Marginal Fault of the Cheb Basin (Czech Republic). Stud Geophys Geod 62, 660–680 (2018). https://doi.org/10.1007/s11200-017-0452-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-017-0452-9

Keywords

Navigation