Skip to main content
Log in

Geoelectrical investigations in the Cheb Basin/W-Bohemia: An approach to evaluate the near-surface conductivity structure

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Cheb Basin, located in the western Eger (Ohře) Rift, is part of the European Cenozoic Rift system. Although presently non-volcanic, it is the most active area within the European Rift with signs of recent geodynamic activity like emanations of mantle derived CO2, and the repeated occurrence of swarm earthquakes, which are common features in active volcanic regions. It is assumed that the fluids, uprising in permeable channels, play a key role for the genesis of these earthquake swarms.

An image of the distribution of the electrical conductivity (resp. resistivity) in the upper crust can give information about the fluid distribution since the electrical patterns reflect pathways of fluids and fluid properties like ionic content. This was the motivation to start both a regional-scale direct current (DC) geoelectrical test covering the Cheb Basin area and several local-scale near surface investigations inside the basin at the seismically active faults Počátky-Plesná Zone (PPZ) and Mariánské Lázně Fault Zone (MLF) near Nový Kostel. It was the research idea to test electrical tomography’s ability to detect faults and tectonic deformation in a complex geological environment and to identify characteristic features of these faults.

The more methodically justified regional field test mainly aimed at clarifying the opportunity to trace DC electrical signals in an area with known high industrial noise in a sufficient quality. A field set-up with a range of 15–20 km is necessary for an investigation depth of 4–5 km in case of DC geoelectrics. A new developed inversion strategy for sparse electrical data sets allows for a first (coarse) model of resistivity distribution. The near surface investigations in prominent fault zones of the Cheb Basin give more detailed information about the structure of fault zones, divide the sedimentary units in different resistivity zones and detect vertical displacements in the quaternary formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bankwitz P., Schneider G., Kämpf H. and Bankwitz E., 2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J. Geodyn., 35, 5–32.

    Article  Google Scholar 

  • Becken M., Ritter O., Park S. K., Bedrosian P.A., Weckmann U. and Weber M., 2008. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys. J. Int., 173, 718–732, doi: 10.1111/j.1365-246X.2008.03754.x.

    Article  Google Scholar 

  • Bedrosian P.A., Unsworth M.J., Egbert G.D. and Thurber C.H., 2004. Geophysical images of the creeping segment of the San Andreas Fault: implications for the role of crustal fluids in the earthquake process. Tectonophysics, 385, 137–158.

    Article  Google Scholar 

  • Bräuer K., Kämpf H., Niedermann S., Strauch G. and Tesař J., 2008. Natural laboratory NW Bohemia: Comprehensive fluid studies between 1992 and 2005 used to trace geodynamic processes. Geochem. Geophys. Geosyst., 9, Q04018, doi: 10.1029/2007GC00192.

    Article  Google Scholar 

  • Bucha V., Horáček J. and Malkovský M., 1990. Paleomagnetic stratigraphy of the Tertiary of the Cheb Basin (W Bohemia). Věst. Ústř. Úst. Geol., 65, 267–278.

    Google Scholar 

  • Červ V., Pek J., Praus O., Zaja A. and Manzella A., 1997a. Magnetotelluric and deep geomagnetic induction data in the Bohemian Massif. Annali di Geofisica, 40, 413–422.

    Google Scholar 

  • Červ V., Pek J. and Praus O., 1997b. The present state of art of long period magnetotellurics in the western part of the Bohemian Massif. J. Geomagn. Geoel., 49, 1559–1583.

    Google Scholar 

  • Červ V., Pek J., Pěčová J. and Praus O., 1997c. Deep geo-electrical research in the western margin of the Bohemian Massif. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci. (Geology), 47, 139–148.

  • Červ V., Kováčiková S., Pek J., Pěčová J. and Praus O., 2001. Geoelectrical structure across the Bohemian Massif and the transition zone to the West Carpathians. Tectonophysics, 332, 201–210.

    Article  Google Scholar 

  • Dahlin T. and Zhou B., 2004. A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophys. Prospect., 52, 379–398.

    Article  Google Scholar 

  • Di Mauro D., Volpi G., Manzella A., Zaja, A., Praticelli N., Červ V., Pek J. and De Santis A., 1999. Magnetotelluric investigations of the seismically active region of Northwest Bohemia: preliminary results. Annali di Geofisica, 42, 39–48.

    Google Scholar 

  • Dobeš M., Hercog F. and Mazáč F., 1986. Die geophysikalische Untersuchung der hydrogeologischen Strukturen im Cheb-Becken. Sbor. Geol. Věd, Užitá Geofyzika, 21, 117–158 (in German).

    Google Scholar 

  • Eisel M., Haak V., Pek J. and Červ V., 2001. A magnetotelluric profile across the German Deep Drilling Project (KTB) area: Two- and three-dimensional modelling results. J. Geophys. Res., 106(B8), 16061–16073.

    Article  Google Scholar 

  • Fiala J. and Vejnar Z., 2004. The lithology, geochemistry, and metamorphic gradation of the crystalline basement of the Cheb (Eger) Tertiary Basin, Saxothuringian Unit. Bull. Geosci., 79, 41–52.

    Google Scholar 

  • Fischer T. and Horálek J., 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. Geodyn., 35, 125–144.

    Article  Google Scholar 

  • Fischer T. and Michálek J., 2008. Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: space-time distribution and waveform similarity analysis. Stud. Geophys. Geod., 52, 493–512.

    Article  Google Scholar 

  • Flechsig Ch., Bussert R., Rechner J., Schütze C. and Kämpf H., 2008. The Hartoušov mofette field in the Cheb Basin, Western Eger Rift (Czech Republic): a comparative geoelectric, sedimentologic and soil gas study of a magmatic diffuse CO2-degassing structure. Z. Geol. Wiss., 36, 177–193.

    Google Scholar 

  • Geissler W.H., Kämpf H., Kind R., Bräuer K., Klinge K., Plenefisch T., Horálek J., Zedník J. and Nehybka V., 2005. Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohře) Rift, central Europe. Tectonics, 24, TC5001, doi: 10.1029/2004TC001672.

    Article  Google Scholar 

  • Günther Th., 2004. Inversion Methods and Resolution Analysis for the 2D/3D Reconstruction of Resistivity Structures from DC Measurements. PhD Thesis, TU Bergakademie, Freiberg, Germany.

    Google Scholar 

  • Günther Th., Rücker C. and Spitzer K., 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography — II. Inversion. Geophys. J. Int., 166, 506–517, doi: 10.1111/j.1365-246X.2006.03011.x.

    Article  Google Scholar 

  • Günther Th. and Rücker C., 2009. Boundless Electrical Resistivity Tomography BERT — the User Tutorial (online at http://www.resistivity.net).

  • Horálek J. and Fischer T., 2008. Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: just what we know (a review). Stud. Geophys. Geod., 52, 455–478.

    Article  Google Scholar 

  • Malkovský M., 1987. The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics, 137, 31–42.

    Article  Google Scholar 

  • Mlčoch B. and Skácelová Z., 2009. Digital elevation model of the crystalline basement of the Cheb and Sokolov Basin araeas. Z. Geol. Wiss., 37, 145–152.

    Google Scholar 

  • Nguyen F., Garambois S., Chardon D., Hermitte D., Bellier O. and Jongmans O., 2007. Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence, France. J. Appl. Geophys., 62, 338–355.

    Article  Google Scholar 

  • Peterek A. and Schröder B., 1997. Neogene fault activity and morphogenesis in the basement area north of the KTB drill site (Fichtelgebirge und Steinwald). Geol. Rundsch., 86, 185–190.

    Article  Google Scholar 

  • Pícha B. and Hudečková E., 1997. Magnetotelluric sounding along the profile 9HR. In: Vrána S. and Štědrá V. (Eds.), Geological model of Western Bohemia Related to the KTB Borehole in Germany. J. Geolog. Sci. (Geology), 47, 149–162.

  • Rücker C., Günther Th. and Spitzer K., 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography — I. Modelling. Geophys. J. Int., 166, 495–505. doi: 10.1111/j.1365-246X.2006.03010.x.

    Article  Google Scholar 

  • Schütze C. and Flechsig Ch., 2002. Structural investigations of an active hydrothermal system beneath the Long Valley caldera, California, using DC-resistivity imaging methods. Z. Geol. Wiss., 30, 119–129.

    Google Scholar 

  • Škvor V, and Sattran V., 1974. Geological Map of CR 1:50.000, 11–14, Cheb. Czech Geological Survey, Prague, Czech Republic.

    Google Scholar 

  • Špičáková L., Uličný D. and Koudelková G., 2000. Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between late Oligocene and Pliocene: a preliminary note. Stud. Geophys. Geod., 44, 556–580.

    Article  Google Scholar 

  • Storz H., Storz W. and Jacobs F., 2000. Electrical resistivity tomography to investigate geological structures of the earth’s upper crust. Geophys. Prospect., 48, 455–471.

    Article  Google Scholar 

  • Švancara J., Gnojek I., Hubatka F. and Dědáček K., 2000. Geophysical field pattern in the West Bohemian geodynamic active area. Stud. Geophys. Geod., 44, 307–326.

    Article  Google Scholar 

  • Twiss R.J. and Moores E.M., 1992. Structural Geology. W.H. Freeman and Company, New York.

    Google Scholar 

  • Wannamaker P.E., Caldwell T.G., Doerner W.M. and Jiracek G.R., 2004. Fault zone fluids and seismicity in compressional and extensional environments inferred from electrical conductivity: the New Zealand Southern Alps and U. S. Earth Planets Space, 56, 1171–1176.

    Google Scholar 

  • Weinlich F.H., Bräuer K., Kämpf H., Strauch G., Tesař J. and Weise S.M., 1999. An acticve subcontinental mantle volatile system in the western Eger rift, Central Europe: gas flux, isotopic (He, C and N) and compositional fingerprints. Geochim. Cosmochim. Acta, 63, 3653–3671.

    Article  Google Scholar 

  • Wise D.J., Cassidy J. and Locke C.A., 2003. Geophysical imaging of the Quaternary Wairoa North Fault, New Zealand: a case study. J. Appl. Geophys., 53, 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Flechsig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flechsig, C., Fabig, T., Rücker, C. et al. Geoelectrical investigations in the Cheb Basin/W-Bohemia: An approach to evaluate the near-surface conductivity structure. Stud Geophys Geod 54, 443–463 (2010). https://doi.org/10.1007/s11200-010-0026-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-0026-6

Keywords

Navigation