Skip to main content

Advertisement

Log in

Evaluation of the fourth-order tesseroid formula and new combination approach to precisely determine gravitational potential

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Calculating topographic gravitational potential (GP) is a time-consuming process in terms of efficiency. Prism, mass-point, mass-line, and tesseroid formulas are generally used to calculate the topographic GP effect. In this study, we reformulate the higher-order formula of the tesseroid by Taylor series expansion and then evaluate the fourth-order formula by numerical tests. Different simulation computations show that the fourth-order formula is reliable. Using the conventional approach in numerical calculations, the approximation errors in the areas of the north and south poles are extremely large. Thus, in this study we propose an approach combining the precise numerical formula and tesseroid formulas, which can satisfactorily solve the calculation problem when the computation point is located in the polar areas or areas very near the surface. Furthermore, we suggest a “best matching choice” of new combination approach to calculate the GP precisely by conducting various experiments. Given the computation point at different positions, we may use different strategies. In the low latitude, we use a precise numerical formula, the fourth-order tesseroid formula, the second-order tesseroid formula, and the zero-order formula, in the 1° range (from the computation point), 1° to 15° range, 15° to 40° range, and the range outside 40°, respectively. The accuracy can reach 2 × 10−5 m2 s−2. For the high latitude, we use the precise numerical formula, fourth-order tesseroid, second-order tesseroid, and zero-order tesseroid formulas in the ranges of 0° to 1°, 1° to 10°, 10° to 30°, and the zones outside 30°, respectively. However, if an accuracy level of 2 × 10−5 m2 s−2 is required, the zero-order tesseroid formulas should not be used and the second-order tesseroid formula should be used in the region outside 15° for the low latitude and in the region outside 10° for the high latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson E.G., 1976. The Effect of Topography on Solutions of Stokes’ Problem. School of Surveying, University of New South Wales, Kensington, NSW, Australia.

    Google Scholar 

  • Asgharzadeh M.F., Von Frese R.R.B., Kim H.R., Leftwich T.E. and Kim J.W., 2007. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int., 169, 1–11.

    Article  Google Scholar 

  • Bassin C., Laske G. and Masters G., 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU, 81, F897.

    Google Scholar 

  • Chaves C.A.M. and Ussami N., 2013. Modeling 3-D density distribution in the mantle from inversion of geoid anomalies: Application to the Yellowstone Province. J. Geophys. Res., 118, 6328–6351.

    Article  Google Scholar 

  • Claessens S.J. and Hirt C., 2013. Ellipsoidal topographic potential: New solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J. Geophys. Res., 118, 5991–6002.

    Article  Google Scholar 

  • Deng X.L., Grombein T., Shen W.B., Heck B. and Seitz K., 2016. Corrections to “A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling” (Heck and Seitz, 2007) and “Optimized formulas for the gravitational field of a tesseroid” (Grombein et al., 2013). J. Geodesy, 90, 585–587.

    Article  Google Scholar 

  • D’Urso M.G., 2012. New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VII Hotine-Marussi International Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 137, 251–256. Springer-Verlag, Berlin, Germany.

    Article  Google Scholar 

  • D’Urso M.G., 2013. On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geodesy, 87, 239–252.

    Article  Google Scholar 

  • D’Urso M.G., 2014. Analytical computation of gravity effects for polyhedral bodies. J. Geodesy, 88, 13–29.

    Article  Google Scholar 

  • Du J., Chen C., Lesur V., Lane R. and Wang H., 2015. Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system. Geophys. J. Int., 201, 1977–2007.

    Article  Google Scholar 

  • Forsberg R., 1984. A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Technical Report 355. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Gray L.J., Glaeser J.M. and Kaplan T., 2004. Direct evaluation of hypersingular Galerkin surface integrals. SIAM J. Sci. Comput., 25, 1534–1556.

    Article  Google Scholar 

  • Grombein T., Seitz K. and Heck B., 2013. Optimized formulas for the gravitational field of a tesseroid. J. Geodesy, 87, 645–660.

    Article  Google Scholar 

  • Han J. and Shen W.B., 2010. Comparative study on two methods for calculating the gravitational potential of a prism. Geospatial Inf. Sci., 13, 60–64.

    Article  Google Scholar 

  • Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136.

    Article  Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. Freeman, San Francisco, CA.

    Google Scholar 

  • Hirt C., Claessens S., Fecher T., Kuhn M., Pail R. and Rexer M., 2013. New ultrahighresolution picture of Earth's gravity field. Geophys. Res. Lett., 40, 4279–4283.

    Article  Google Scholar 

  • Hirt C., Featherstone W.E. and Claessens S.J., 2011. On the accurate numerical evaluation of geodetic convolution integrals. J. Geodesy, 85, 519–538.

    Article  Google Scholar 

  • Hirt C. and Kuhn M., 2014. Band-limited topographic mass distribution generates full-spectrum gravity field: Gravity forward modeling in the spectral and spatial domains revisited. J. Geophys. Res., 119, 3646–3661.

    Article  Google Scholar 

  • Hirt C., Marti U., Bürki B. and Featherstone W.E., 2010. Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data. J. Geophys. Res., 115, B10404.

    Article  Google Scholar 

  • Hirt C. and Rexer M., 2015. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models- available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf., 39, 103–112.

    Article  Google Scholar 

  • Jarvis A., Reuter H.I., Nelson A. and Guevara E., 2008. Hole-Filled SRTM for the Globe, Version 4. CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).

    Google Scholar 

  • Jena B., Kurian P.J., Swain D., Tyagi A. and Ravindra R., 2012. Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: Mapping of two unnamed deep seamounts. Int. J. Appl. Earth Obs. Geoinf., 16, 1–4.

    Article  Google Scholar 

  • Karcol R., 2011. Gravitational attraction and potential of spherical shell with radially dependent density. Stud. Geophys. Geod., 55, 21–34.

    Article  Google Scholar 

  • Khayat M.A. and Wilton D.R., 2005. Numerical evaluation of singular and near-singular potential integrals. IEEE Trans. Antennas Propag., 53, 3180–3190.

    Article  Google Scholar 

  • Kiamehr R. and Sjöberg L.E., 2005. Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran. J. Geodesy, 79, 540–551.

    Article  Google Scholar 

  • Kiamehr R., 2006. Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least-Squares Modification of Stokes’ Formula: with Some Geodynamic Interpretations. Ph.D. Thesis. Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  • Klees R., 1996. Numerical calculation of weakly singular surface integrals. J. Geodesy, 70, 781–797.

    Article  Google Scholar 

  • Klees R. and Lehmann R., 1998. Calculation of strongly singular and hypersingular surface integrals. J. Geodesy, 72, 530–546.

    Article  Google Scholar 

  • Ku C.C., 1977. A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalentpoint method and a simplified cubic spline. Geophysics, 42, 610–622.

    Article  Google Scholar 

  • Kuhn M., 2003. Geoid determination with density hypotheses from isostatic models and geological information. J. Geodesy, 77, 50–65.

    Article  Google Scholar 

  • Kuhn M., Featherstone W.E. and Kirby J.F., 2009. Complete spherical Bouguer gravity anomalies over Australia. Aust. J. Earth Sci., 56, 213-223.

    Article  Google Scholar 

  • Laske G., Masters G., Ma Z. and Pasyanos M., 2013. Update on CRUST1.0-A 1-degree global model of Earth’s crust. Geophys. Res. Abs., 1, 2658.

    Google Scholar 

  • Majumdar T.J. and Bhattacharyya R., 2014. High resolution satellite gravity over a part of the Sir Creek offshore on west northwest margin of the Indian subcontinent. Indian J. Geo-Mar. Sci., 43, 337–339.

    Google Scholar 

  • Martinec Z., 1998. Boundary Value Problems for Gravimetric Determination of a Precise Geoid. Lecture Notes in Earth Sciences, 73. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560.

    Article  Google Scholar 

  • Nagy D., Papp G., Benedek J., 2002. Corrections to “The gravitational potential and its derivatives for the prism”. J. Geodesy, 1, 475.

    Article  Google Scholar 

  • Reguzzoni M. and Sampietro D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf., 35, 31–43.

    Article  Google Scholar 

  • Rexer M. and Hirt C., 2014. Comparison of free high resolution digital elevation data sets (ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Australian National Gravity Database. Aust. J. Earth Sci., 61, 213–226.

    Article  Google Scholar 

  • Roussel C., Verdun J., Cali J. and Masson F., 2015. Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature. Geophys. J. Int., 203, 2220–2236.

    Article  Google Scholar 

  • Shen W.B. and Han J., 2013. Improved geoid determination based on the shallow-layer method: A case study using EGM08 and CRUST2. 0 in the Xinjiang and Tibetan regions. Terr. Atmos. Ocean Sci., 24, 591–604.

    Article  Google Scholar 

  • Shen W.B. and Han J., 2014. The 5′ × 5′ global geoid 2014 (GG2014) based on shallow layer method and its evaluation. Geophys. Res. Abs., 1, 12043.

    Google Scholar 

  • Shen W.B. and Han J., 2016. The 5′ × 5′global geoid model GGM2016. Geophys. Res. Abs., 1, 7873.

    Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys., 59, 502–525.

    Article  Google Scholar 

  • Smith D.A., 2000. The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. J. Geodesy, 74, 414–420.

    Article  Google Scholar 

  • Tenzer R., Novák P., Gladkikh V. and Vajda P., 2012. Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl. Geophys., 169, 1663–1678.

    Article  Google Scholar 

  • Tsoulis D., 1999. Analytical and Numerical Methods in Gravity Field Modelling of Ideal and Real Masses. Ph.D. Thesis. Deutsche Geodätische Kommission, C510, München, Germany.

    Google Scholar 

  • Tsoulis D., 2012. Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics, 77, F1–F11.

    Article  Google Scholar 

  • Tsoulis D., Novák P. and Kadlec M., 2009. Evaluation of precise terrain effects using highresolution digital elevation models. J. Geophys. Res., 114, B02404.

    Article  Google Scholar 

  • Vaníček P., Novák P. and Martinec Z., 2001. Geoid, topography, and the Bouguer plate or shell. J. Geodesy, 75, 210–215.

    Article  Google Scholar 

  • von Frese R.R.B., Hinze W.J., Braile L. and Luca A.J., 1981. Spherical Earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration. J. Geophys., 49, 234–242.

    Google Scholar 

  • Wild-Pfeiffer F., 2008. A comparison of different mass elements for use in gravity gradiometry. J. Geodesy, 82, 637–653.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, WB., Deng, XL. Evaluation of the fourth-order tesseroid formula and new combination approach to precisely determine gravitational potential. Stud Geophys Geod 60, 583–607 (2016). https://doi.org/10.1007/s11200-016-0402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0402-y

Keywords

Navigation