Skip to main content
Log in

A weighted least-squares solution to a 3-D symmetrical similarity transformation without linearization

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A weighted least-squares (WLS) solution to a 3-D non-linear symmetrical similarity transformation within a Gauss-Helmert (GH) model, and/or an errors-in-variables (EIV) model is developed, which does not require linearization. The geodetic weight matrix is the inverse of the observation dispersion matrix (second-order moment). We suppose that the dispersion matrices are non-singular. This is in contrast to Procrustes algorithm within a Gauss-Markov (GM) model, or even its generalized algorithms within the GH and/or EIV models, which cannot accept geodetic weights. It is shown that the errors-invariables in the source system do not affect the estimation of the rotation matrix with arbitrary rotational angles and also the geodetic weights do not participate in the estimation of the rotation matrix. This results in a fundamental correction to the previous algorithm used for this problem since in that algorithm, the rotation matrix is calculated after the multiplication by row-wise weights. An empirical example and a simulation study give insight into the efficiency of the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arun K., Huang T. and Blostein S.D., 1987. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell., 9, 698–700.

    Article  Google Scholar 

  • Awange L., 1999. Partial Procrustes solution of the threedimensional orientation problem from GPS/LPS observations. In: Krumm F. and Schwarze V.S., (Eds) Quo vadis geodesia? Technical Report. Department of Geodesy and Geoinformatics, University of Stuttgart, Stuttgart, Germany, ISSN: 0933-2839.

    Google Scholar 

  • Crosilla F. and Beinat A., 2002. Use of generalized Procrustes analysis for the photogrammetric block adjustment by independent models. ISPRS-J. Photogramm. Remote Sens., 56, 195–209, DOI: 10.1016/S0924-2716(02)00043-6.

    Article  Google Scholar 

  • Fang X., 2011. Weighted Total Least Squares Solutions for Applications in Geodesy. Ph.D. Thesis. Leibniz University, Hannover, Germany.

    Google Scholar 

  • Felus F. and Burtch R., 2009. On symmetrical three-dimensional datum conversion. GPS Solut., 13, 65–74.

    Article  Google Scholar 

  • Felus Y. and Schaffrin B., 2005. Performing similarity transformations using the Error-In-Variables Model. ASPRS Annual Meeting, Baltimore, MD (ftp://ftp.ecn.purdue.edu/jshan/proceedings/asprs2005/Files/0038.pdf).

    Google Scholar 

  • Grafarend E., 2012. Applications of Linear and Nonlinear Models: Fixed Effects, Random Effects and Total Least Squares. Springer-Verlag, Heidelberg-New York.

    Book  Google Scholar 

  • Grafarend E. and Schaffrin B., 1993. Ausgleichungsrechnung in linearen Modellen. BIWissenschaftsverlag, Mannheim, Germany, ISBN: 3-411-16381-X.

    Google Scholar 

  • Grafarend E. and Awange J., 2003. Nonlinear analysis of the threedimensional datum transformation. J. Geodesy, 77, 66–76, DOI: 10.1007/s00190-002-0299-9.

    Article  Google Scholar 

  • Grafarend E. and Okeke F., 1998. Transformation of conformal coordinates of type mercator from a global datum (WGS 84) to a local datum (regional, national). Mar. Geod., 21, 169–180.

    Article  Google Scholar 

  • Green B., 1952. The orthogonal approximation of an oblique structure in factor analysis. Psychometrika, 17, 429–440.

    Article  Google Scholar 

  • Krarup T., 1979. S Transformation or How to Live without the Generalized Inverse - Almost. Institute of Geodesy, Charlottenlund, Denmark.

    Google Scholar 

  • Magnus J., 1988. Linear Structures. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Mahboub V., 2012. On weighted total least-squares for geodetic transformations. J. Geodesy, 86, 359–367, DOI: 10.1007/s00190-011-0524-5.

    Article  Google Scholar 

  • Mahboub V., 2014. Variance component estimation in errors-in-variables models and a rigorous total least squares approach. Stud. Geophys. Geod., 58, 17–40, DOI: 10.1007/s11200-013-1150-x.

    Article  Google Scholar 

  • Mahboub V., Amiri-Simkooei A. and Sharifi M.A., 2012. Iteratively reweighted total least-squares: A robust estimation in errors-in-variables models. Surv. Rev., 45, 92–99, DOI: 10.1179/1752270612Y.0000000017.

    Google Scholar 

  • Mahboub V., Ardalan A.A. and Ebrahimzadeh S., 2015. Adjustment of non-typical errors-invariables models. Acta Geod. Geophys., 50, 207–218, DOI 10.1007/s40328-015-0109-5.

    Article  Google Scholar 

  • Mahboub V. and Sharifi M.A., 2013. On weighted total least-squares with linear and quadratic constraints. J. Geodesy, 87, 279–286, DOI: 10.1007/s00190-012-0598-8.

    Article  Google Scholar 

  • Mikhail E., Bethel J. and McGlone C., 2001. Introduction to Modern Photogrammetry. Wiley, Chichester, U.K.

    Google Scholar 

  • Neitzel F., 2010. Generalization of total least-squares on example of unweighted and weighted similarity transformation. J. Geodesy, 84, 751–762.

    Article  Google Scholar 

  • Neitzel F. and Schaffrin B., 2016. On the Gauss-Helmert model with a singular dispersion matrixwhere BQ is of smaller rank than B. J. Comput. Appl. Math., 291, 458–467, DOI: 1-0.1016/j.cam.2015.03.006.

    Article  Google Scholar 

  • Sansò F., 1973. An exact solution of the roto-translation problem. Photogrammetria, 29, 203–216.

    Article  Google Scholar 

  • Schaffrin B. and Felus Y., 2008. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J. Geodesy, 82, 353–383.

    Google Scholar 

  • Schaffrin B., Neitzel F., Uzun S. and Mahboub V., 2012. Modifying Cadzow’s algorithm to generate the optimal TLS-solution for the structured EIV-model of a similarity transformation. J. Geod. Sci., 2, 98–106.

    Google Scholar 

  • Schaffrin B., Snow K. and Neitzel F., 2014. On the Errors-In-Variables model with singular dispersion matrices. J. Geod. Sci., 4, 28–36, DOI: 10.2478/jogs-2014-0004.

    Google Scholar 

  • Schaffrin B. and Wieser A., 2009. Empirical affine reference frame transformations by weighted multivariate TLS adjustment. In: Drewes H. (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia 134, Springer-Verlag, Berlin, Germany, 213–218.

    Chapter  Google Scholar 

  • Schönemann P., 1966. Generalised solution of the orthogonal Procrustes problem. Psychometrika, 31, 1–10.

    Article  Google Scholar 

  • Snow K., 2012. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Priori Information. Ph.D. Thesis. School of Earth Sciences, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Teunissen P., 1985. The Geometry of Geodetic Inverse Linear Mapping and Non-Linear Adjustment. Publications on Geodesy 8(1). Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Teunissen P., 1988. The non-linear 2D symmetric Helmert transformation: an exact non-linear leastsquares solution. J. Geodesy, 62, 1–16.

    Google Scholar 

  • Umeyama S., 1991. Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal., 13, 376–380, DOI: 10.1109/34.88573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mahboub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahboub, V. A weighted least-squares solution to a 3-D symmetrical similarity transformation without linearization. Stud Geophys Geod 60, 195–209 (2016). https://doi.org/10.1007/s11200-015-1109-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-1109-1

Keywords

Navigation