Skip to main content
Log in

Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We summarise the results of seismological studies related to triggering mechanisms, driving forces and source processes of the West Bohemia/Vogtland earthquake swarms with the aim to disclose the role of crustal fluids in the preparation, triggering and governing of the swarms. We present basic characteristics distinguishing earthquake swarms from tectonic mainshock-aftershock sequences and introduce existing earthquakes swarm models. From the statistical characteristics and time-space distribution of the foci we infer that self-organization is a peculiarity of West Bohemia/Vogtland swarms. We discuss possible causes of the foci migration in these swarms from the viewpoint of co-seismic and/or post-seismic stress changes and diffusion of the pressurized fluids, and we summarize hitherto published models of triggering the 2000-swarm. Attention is paid to the source mechanisms, particularly to their non-shear components. We consider possible causes of different source mechanisms of the 1997-and 2000-swarms and infer that pure shear processes controlled solely by the regional tectonic stress prevail in them, and that additional tensile forces may appear only at unfavourably oriented faults. On data from the fluid injection experiment at the HDR site Soultz (Alsace), we also show that earthquakes triggered by fluids can represent purely shear processes. Thus we conclude that increased pore pressure of crustal fluids in the region plays a key role in bringing the faults from the subcritical to critical state. The swarm activities are mainly driven by stress changes due to co-seismic and post-seismic slips, which considerably depend on the frictional conditions at the fault; crustal fluids keep the fault in a critical state. An open question still remains the cause of the repeatedly observed almost simultaneous occurrence of seismic activity in different focal zones in a wider area of West Bohemia/Vogtland. The analysis of the space-time relations of seismicity in the area between 1991 and 2007 revealed that during a significant part of this time span the seismicity was switching among distant focal zones. This indicates a common triggering force which might be the effect of an increase of crustal-fluid pore-pressure affecting a wider epicentral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonini M., 1988. Variations in the focal mechanisms during the 1985/86 Western Bohemian earthquake swarm sequence — correlation with spatial distribution of foci and suggested geometry of faulting. In: Procházková D. (Ed.), Induced Seismicity and Associated Phenomena. Geophys. Inst. Czechosl. Acad. Sci., Praha, Czech Republic, 250–270.

    Google Scholar 

  • Assumpção M., 1981. The NW Scotland earthquake swarm of 1974. Geophys. J. R. Astron. Soc., 67, 557–586.

    Google Scholar 

  • Audin L., Avouac J.-P., Flouzat M. and Plantet J.-L., 2002. Fluid-driven seismicity in a stable tectonic context: The Remiremont fault zone, Vosges, France. Geophys. Res. Lett., 29, 1091, doi: 10.1029/2001GL012988.

    Article  Google Scholar 

  • Babuška V., Plomerová J. and Fischer T, 2007. Intraplate seismicity in the western Bohemian Massif (central Europe): a possible correlation with a paleoplate junction. J. Geodyn., 44, 149–159, doi: 10.1016/j.jog.2007.02.004.

    Article  Google Scholar 

  • Bankwitz P., Schneider G., Kämpf H. and Bankwitz E., 2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J. Geodyn., 35, 5–32.

    Article  Google Scholar 

  • Bott J.D.J. and Wong I.G., 1995. The 1986 Crested Butte earthquake swarm and its implication for seismogenesis in Colorado. Bull. Seimol. Soc. Amer., 85, 1495–1500.

    Google Scholar 

  • Brudy M., Zoback M.D., Fuchs K., Rummel F. and Baumgärtner J., 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implication for crustal strength. J. Geophys. Res., 102(B8), 18453–18475.

    Article  Google Scholar 

  • Chiu J.-M., Johnston A.C., Metzger A.G., Haar L. and Fletcher J., 1984. Analysis of analog and digital records of the 1982 Arkansas earthquake swarm. Bull. Seimol. Soc. Amer., 74, 1721–1742.

    Google Scholar 

  • Číž R. and Rudajev V., 2001. Analysis of seismicity of Western Bohemian earthquake swarm areas. Acta Montana IRMS AS CR, Series A, 121, No 18, 5–13.

    Google Scholar 

  • Cochran S.E., Vidale J.E. and Tanaka S., 2004. Earth tides can trigger shallow thrust fault earthquakes. Science, 306, doi: 10.1126/science.1103961.

  • Colletini C. and Holdsworth R.E., 2004. Fault zone weakening and character of slip along low-angle normal fault: insights from the Zuccale fault, Elba, Italy. J. Geol. Soc. London, 161, 1039–1051.

    Article  Google Scholar 

  • Console R. and Rosini R., 1998. Non-double couple microearthquakes in the geothermal field of Larderello, central Italy. Tectonophysics, 289, 203–220.

    Article  Google Scholar 

  • Dorbath L., Cuénot N., Center A. and Frogneux M., 2008. Seismic response of the fractured and faulted granite to massive water injection at 5 km depth at Soutz-sous-Forêts (France). Geophys. J. Int. (in press).

  • Dreger D.S., Tkalcic H. and Jonston M., 2000. Dilational processes accompanying earthquakes in the Long Valley Caldera. Science, 288, 122–125.

    Article  Google Scholar 

  • Dorel J., Fourvel D. and Donnadieu G., 1995. Etude de la seismicité de l’Auvergne et des régions limitrophes (Massif central francais). Bull. Soc. Géol. France, 166, 271–284 (in French).

    Google Scholar 

  • Evans D.M., 1966. The Denver area earthquakes and the Rocky Mountain Arsenal Disposal Well. Mountain Geol., 3, 23–26.

    Google Scholar 

  • Fischer T. and Horálek J., 2000. Refined locations of the swarm earthquakes in the Nový Kostel focal zone and spatial distribution of the January 1997 swarm in Western Bohemia, Czech Republic. Stud. Geophys. Geod., 44, 210–226.

    Article  Google Scholar 

  • Fischer T., 2003. The August–December 2000 Earthquake swarm in NW Bohemia: the first results based on automatic processing of seismograms. J. Geodyn., 35, 59–81.

    Article  Google Scholar 

  • Fischer T. and Horálek J,. 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. Geodyn., 35, 125–144.

    Article  Google Scholar 

  • Fischer T. and Horálek J., 2005. Slip-generated patterns of swarm microearthquakes from West Bohemia/Vogtland (central Europe): evidence of their triggering mechanism? J. Geophys. Res., 110, B05S21, doi: 10.1029/2004JB003363.

    Article  Google Scholar 

  • Fischer T., Kalenda P. and Skalský L., 2006. Weak tidal correlation of NW-Bohemia/Vogtland earthquake swarms. Tectonophysics, 424, 259–269.

    Article  Google Scholar 

  • Fischer T. and Michálek J., 2008. Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: space-time distribution and waveform similarity analysis. Stud. Geophys. Geod., 52, 493–511.

    Article  Google Scholar 

  • Gögen K. and Wagner G.A., 2000. Alpha-recoil track dating of Quaternary volcanoes. Chem. Geol., 166, 127–137.

    Article  Google Scholar 

  • Hainzl S. and Fischer T., 2002. Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW-Bohemia. J. Geophys. Res., 107, Art.No. 2338, doi: 10.1029/2002JB001865.

  • Hainzl S., 2003. Self-organization of earthquake swarms. J. Geodyn., 35, 157–172.

    Article  Google Scholar 

  • Hainzl S., 2004. Seismicity pattern of earthquake swarms due to fluid intrusion and stress triggering. Geophys. J. Int., 159, 1090–1096, doi: 10.1111/j.1365-246X.2004.02463.x.

    Article  Google Scholar 

  • Hainzl S. and Ogata Y., 2005. Detecting fluid signals in seismicity data through statistical modelling. J. Geophys. Res., 110, B05S07, doi:10.1029/2004JB003247.

    Article  Google Scholar 

  • Hainzl S., Kraft T., Wassermann J., Igel H. and Schmedes E., 2006. Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett., 33, L19303, doi: 10.1029/2006GL027642.

    Article  Google Scholar 

  • Healy J.H., Rubey W.W., Griggs D.T. and Raleigh C.B., 1968. The Denver earthquakes. Science, 161, 1301–1310.

    Article  Google Scholar 

  • Hill D.P., 1977. A model for earthquake swarms. J. Geophys. Res., 82, 1347–1352.

    Article  Google Scholar 

  • Hill D.P., Bailey R.A. and Ryall A.S., 1985. Active tectonic and magmatic processes beneath Long Valley caldera, Eastern California: an overview. J. Geoph. Res., 90, 11111–11120.

    Article  Google Scholar 

  • Horálek J., Šílený J. and Fischer T., 2002. Moment tensors of the January 1997 earthquake swarm in West Bohemia (Czech Republic): double-couple vs. non-double-couple events. Tectonophycics, 356, 65–85.

    Article  Google Scholar 

  • Jenatton L., Guiguet R., Thouvenot F. and Daix N., 2007. The 16,000-event 2003–2004 earthquake swarm in Ubaye (French Alps). J. Geophys. Res., 112, B11304, doi: 10.1029/2006JB004878.

    Article  Google Scholar 

  • Julian B.R., Miller A.D. and Foulgler G.R., 1997. Non-double-couple earthquake mechanisms at the Hengill-Grensdalur volcanic complex, Southwest Iceland. Geophys. Res. Lett., 24, 743–746.

    Article  Google Scholar 

  • Kraft T., Wassermann J., Schmedes E. and Igel H., 2006. Meteorological triggering of earthquake swarms at Mt. Hochstaufen, SE-Germany. Tectonophysics, 424, 245–258.

    Article  Google Scholar 

  • Kurz J., Jahr T. and Jentzsch G., 2004. Earthquake swarm examples and a look at the generation mechanism of the Vogland/Western Bohemia earthquake swarms. Phys. Earth Planet. Inter., 142, 75–88.

    Article  Google Scholar 

  • Lay T. and Wallace T.C., 1995. Modern Global Seismology. Academic Press, San Diego.

    Google Scholar 

  • Lees J.M., 1998. Multiplet analysis at Coso geothermal. Bull. Seismol. Soc. Amer., 88, 1127–1143.

    Google Scholar 

  • Miller A.D., Foulgler G.R. and Julian B.R., 1998. Non-double-couple earthquakes, 2. observations. Rev. Geophys., 36, 551–568.

    Article  Google Scholar 

  • Mogi K., 1963. Some discussion on aftershocks, foreshocks and earthquake swarms — the fracture of semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena. Bull. Earthq. Res. Inst., 41, 615–658.

    Google Scholar 

  • Neunhöfer H. and Hemmann A., 2005. Earthquake swarms in the Vogtland/Western Bohemia region: Spatial distribution and magnitude-frequency distribution as an indication of the genesis of swarms? J. Geodyn., 39, 361–385.

    Article  Google Scholar 

  • Ohtake M., 1974. Seismic activity induced by water injection at Matsushiro, Japan. J. Phys. Earth, 22, 163–176.

    Google Scholar 

  • Parotidis M., Rothert E. and Shapiro S.A., 2003. Pore-pressure diffusion: A possible mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophys. Res. Let., 30, 2075, doi: 10.1029/2003GL018110.

    Article  Google Scholar 

  • Raleigh C.B., Healy J.H. and Bredehoeft J.D., 1976. Experiment in earthquake control at Rangely, Colorado. Science, 191, 1230–1237.

    Article  Google Scholar 

  • Saar O. and Manga M., 2003. Seismicity induced by seasonal ground-water recharge at Mt. Hood, Oregon. Earth Planet. Sci. Lett., 214, 605–618.

    Article  Google Scholar 

  • Scholz C.H., 1998. Earthquakes and friction laws. Nature, 391, 37–42.

    Article  Google Scholar 

  • Shapiro S.A., Huenges E. and Borm G., 1997. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int., 131, F15–F18.

    Article  Google Scholar 

  • Šafanda J. and Čermák V., 2000. Subsurface temperature changes due to the crustal magmatic activity — numerical simulation. Stud. Geophys. Geod., 44, 327–335.

    Article  Google Scholar 

  • Švancara J., Havíř J. and Conrad W., 2008: Derived gravity field of the seismogenic upper crust of SE Germany and West Bohemia and its comparison with seismicity. Stud. Geophys. Geod., 52, 567–588.

    Article  Google Scholar 

  • Špičák A. and Horálek J., 2000. Migration of events during the January 1997 earthquake swarm (The West Bohemia-Vogtland region). Stud. Geophys. Geod., 44, 227–232.

    Article  Google Scholar 

  • Todokoro K. and Masataka A., 2000. Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration. J. Geophys. Res., 105(B3), 6089–6104.

    Article  Google Scholar 

  • Tittel B. and Wendt S., 2003. Magnitudes and time distribution of the swarm earthquakes August–November 2000 in NW Bohemia. J. Geodyn., 35, 97–105.

    Article  Google Scholar 

  • Utsu T., Ogata Y. and Matsu’ura R.S., 1995. The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth, 43, 1–33.

    Google Scholar 

  • Vavryčuk V., 2002. Non-double-couple earthquakes of January 1997 in West Bohemia, Czech Republic: Evidence of tensile faulting. Geophys. J. Int., 149, 364–373.

    Article  Google Scholar 

  • Vidale J.E., Agnew D.C., Johnston M.J.S. and Oppenheimer D.H., 1998. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate. J. Geoph. Res., 103(B10), 24567–24572.

    Article  Google Scholar 

  • Weinlich F., Bräuer K., Kämpf H., Strauch G., Tesař J. and Weise S.M., 1999. An active subcontinental mantle volatile system in the western Eger rift, Central Europe: Gas flux, isotopic (He, C, and N) and compositional fingerprints. Geochim. Cosmochim. Acta, 63, 3653–3671.

    Article  Google Scholar 

  • Weise S.M., Bräuer K., Kämpf H., Strauch G. and Koch U., 2000. Transport of mantle volatiles through the crust traced by seismically released fluids: A natural experiment in the earthquake swarm area Vogtland/NW Bohemia, Central Europe. Tectonophysics, 336, 137–150.

    Article  Google Scholar 

  • Wyss M., Shimazaki K. and Wiemer S. 1997. Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J. Geophys. Res., 102(B9), 20413–20422.

    Article  Google Scholar 

  • Yamashita T., 1999. Pore creation due to fault slip in a fluid-permeated fault zone and its effect on seismicity: generation mechanism of earthquake swarm. Pure Appl. Geophys., 155, 625–647.

    Article  Google Scholar 

  • Zoback M.D. and Harjes H.-P., 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J. Geophys. Res., 102(B8), 18477–18491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Horálek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horálek, J., Fischer, T. Role of crustal fluids in triggering the West Bohemia/Vogtland earthquake swarms: Just what we know (a review). Stud Geophys Geod 52, 455–478 (2008). https://doi.org/10.1007/s11200-008-0032-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-008-0032-0

Keywords

Navigation