Skip to main content

Advertisement

Log in

Risk in Science Instruction

The Realist and Constructivist Paradigms of Risk

  • Article
  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Risk is always present in people’s lives: diseases, new technologies, socio-scientific issues (SSIs) such as climate change, and advances in medicine—to name just a few examples—all carry risks. To be able to navigate risks in everyday life, as well as to participate in social debate on risk-related issues, students need to develop risk competence. Science education can be a powerful tool in supporting students’ risk competence, which is an important component of scientific literacy. As there are different definitions of risk within the scientific community, the aims of this article are (1) to review the literature on two major theoretical frameworks for conceptualising risk, the realist, and the constructivist paradigms of risk and (2) to connect both in order to suggest a working definition of what can be understood as risk competence in science instruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In ‘Risk society: towards a new modernity’ (1992), Ulrich Beck predicts a growing number of risks. While humans have always had to face risks, Beck’s thesis is that members of modern society are increasingly challenged with man-made risks, which are the results of technologies and products usually connected with new scientific knowledge.

  2. cf. Slovic et al. (1982), Finucane and Holup (2005), and Gigerenzer (2006).

  3. See Bond (2009), Gigerenzer and Martignon (2015), and Latten et al. (2011).

  4. See, for example, Royal Society (1985), AAAS (1989), NRC (1996), and OECD (1999).

  5. The first proposal to include risk assessment in science education was probably made by Howes (1975) and, 10 years later, by Eijkelhof (1986).

  6. For the USA, see Science Education for Public Understanding Program (2011); in Australia, see Australian Curriculum, Assessment, and Reporting Authority (2016); and in the UK, see Standards and Testing Agency (2013).

  7. Eijkelhof’s work not only promoted the inclusion of risk in science education but also advanced the STS (science-technology-society) movement of the 1980s and early 1990s.

  8. For example, see Howes (1975), Eijkelhof (1986, 1990, 1996), Keren and Eijkelhof (1990), Lijnse et al. (1990), Cross (1993), Ravetz (1997), Jenkins (2000), Dillon and Gill (2001), Levinson and Turner (2001), Solomon (2003), Bryce and Gray (2004), and Christensen (2009).

  9. For example, compare with Fleming (1986a, 1986b), Solomon (1990), Zeidler et al. (2002), Dawson and Venville (2010), Khishfe (2013), and Lee et al. (2013).

  10. An in-depth look at science and the theory of realism can be found in the comprehensive work of Bhaskar (2008): A Realist Theory of Science.

  11. Compare Short (1984), Covello and Merkhofer (1993), Geiger (1998), and Brewer et al. (2007).

  12. For a more detailed review of realist methods, consult Renn (1992, pp. 58–61).

  13. This has been noted by Kolstø (2006).

  14. See, for example, Covello and Merkhofer (1993), Breakwell (1994), Wilkinson (2001), Rohrmann (2005), Lupton and Tulloch (2002a), Lupton and Tulloch (2002b), and Sjöberg (2004).

  15. Compare Sjöberg (2004), Slovic et al. (2007), Metzner-Szigeth (2009), Singleton et al. (2009), and Bodemer and Gaissmaier (2015).

  16. Compare with Trumbo (2002), Oltedal et al. (2004), Sjöberg (2004), and Slovic et al. (2007).

  17. See Sjöberg et al. (2004), Betsch et al. (2012), Bodemer et al. (2014), and Bodemer and Gaissmaier (2015).

  18. For further information on subjective utilities (e.g. subjective (dis)satisfaction) and choice rules under uncertainty within economic calculations, consult Walliser (2008), especially Sect. 3.4 on pp. 56–59.

  19. Prominent examples of cultural and social theories are Beck’s (1992) risk society, Giddens’ (2011) reflexive modernisation, the theory of communicative action by Habermas (1984, 1987), governmentality by Foucault (1983), and the Cultural Theory of Risk by Douglas (1966) and Douglas and Wildavsky (1983). For a comprehensive overview of social and cultural theories of risk, see Zinn and Taylor-Goodby (2006).

  20. Compare Howes (1975), Layton (1993), DeBoer (2000), Ryder (2001), Aikenhead (2006), Roberts (2007), and Allchin (2014).

  21. See Ryder (2001), Aikenhead (2006), Colucci-Gray et al. (2006), Millar (2006), Roberts (2007), and Sadler and Zeidler (2009).

  22. Over time, this traditional approach has attracted its critics. The presentation of science in the classroom has evolved, while Nature of Science (NOS) has emerged as a large field of research in science education. An overview of the history of NOS in science education research, as well as the introduction of a new framework (incorporating more aspects than the traditional approach) in which science can be understood, can be found in Erduran and Dagher (2014).

  23. Compare with Howes (1975), Eijkelhof (1986), Cross (1993), Ravetz (1997), Kolstø (2006), Christensen (2009), and Gigerenzer and Martignon (2015).

  24. See Howes (1975), Eijkelhof (1986), Kolstø (2006), and Levinson et al. (2012).

  25. For a more in-depth look at media competence concerning RRIs, as well as at ways in which media influence risk communication, consult Hug (2012), Paling (2003), Klebl and Borst (2010), Binder et al. (2015), and Ratcliffe and Grace (2003, pp. 7–9).

  26. Bybee (1997), Fives et al. (2014), Gott et al. (2006), Gräber and Bolte (1997), Hodson (1992), Osborne and Costello (2004), and Shavelson et al. (2008).

  27. An example of a teaching unit on risk and benefit balancing based around the RRI ‘vaccination’ can be found in Ratcliffe and Grace (2003, pp. 12–17).

  28. Compare with Howes (1975), Eijkelhof (1986), Cross (1993), Ravetz (1997), Kolstø (2006), Christensen (2009), and Levinson et al. (2012).

  29. See Eijkelhof (1986), Laugksch (2000), Levinson et al. (2012), and Kolstø (2006).

  30. As seen in the study on decision-making strategies concerning high-voltage power lines by Kolstø (2006) and the teaching unit on ionising radiation by Eijkelhof (1986).

  31. For studies applying the Psychometric Paradigm, see Fischhoff et al. (1978), Marris et al. (1997), Finucane et al. (2000), Bronfman and Cifuentes (2003), Savadori et al. (2004), Siegrist et al. (2005), and Siegrist et al. (2007).

  32. On adolescent risk perception, see Benthin et al. (1993), Simonneaux et al. (2013), and Ramji et al. (2015). On teachers’ risk perception, see Gardner and Jones (2011).

References

  • AAAS. (1989). Science for all Americans. Project 2061. New York: Oxford Univ. Press.

    Google Scholar 

  • ACARA. (2015). Australian curriculum, Australian curriculum assessment and reporting authority. Retrieved from http://www.australiancurriculum.edu.au/science/curriculum/f-10?layout=1

  • ACARA. (2016). Australian curriculum, Australian curriculum assessment and reporting authority. Retrieved from https://www.australiancurriculum.edu.au/senior-secondary-curriculum/

  • Aikenhead, G. S. (2006). Science education for everyday life: evidence-based practice. Ways of knowing in science and mathematics series. New York, NY: Teachers College Press.

    Google Scholar 

  • Allchin, D. (2014). From science studies to scientific literacy: a view from the classroom. Science & Education, 23(9), 1911–1932.

    Article  Google Scholar 

  • AQA. (2016). Science in society: assessing impacts of science and technology: risk and risk assessment. Retrieved from http://www.aqa.org.uk/subjects/science/as-and-a-level/science-in-society-2400/subject-content/how-science-works

  • Banse, G., & Bechmann, G. (1998). Interdisziplinäre Risikoforschung: Eine Bibliographie. Wiesbaden: s.l.: VS Verlag für Sozialwissenschaften Retrieved from https://doi.org/10.1007/978-3-322-91655-6.

    Book  Google Scholar 

  • Barnett, R. (2009). Knowing and becoming in the higher education curriculum. Studies in Higher Education, 34(4), 429–440.

    Article  Google Scholar 

  • Bhaskar, R. (2008). A Realist Theory of Science (Radical Thinkers). Verso.

  • Beck, U. (1992). Risk society: towards a new modernity. London: Sage.

    Google Scholar 

  • Benthin, A., Slovic, P., & Severson, H. (1993). SA psychometric study of adolescent risk perception. Journal of Adolescence, (16.2), 153–168.

  • Betsch, C., Brewer, N. T., Brocard, P., Davies, P., Gaissmaier, W., Haase, N., et al. (2012). Opportunities and challenges of Web 2.0 for vaccination decisions. Vaccine, 30(25), 3727–3733.

    Article  Google Scholar 

  • Binder, A. R. (2013). Understanding public opinion of nanotechnology. In Nanotechnology in Dermatology (pp. 269–278). Springer New York.

  • Bodemer, N., & Gaissmaier, W. (2015). Risk perception. In H. Cho, T. Reimer, & K. A. McComas (Eds.), The SAGE handbook of risk communication (pp. 10–23). Los Angeles, Calif: Sage.

    Google Scholar 

  • Bodemer, N., Meder, B., & Gigerenzer, G. (2014). Communicating relative risk changes with baseline risk: presentation format and numeracy matter. Medical decision making : an international journal of the Society for Medical Decision Making, 34(5), 615–626.

    Article  Google Scholar 

  • Bond, M. (2009). Decision-making: risk school. Nature, 461(7268), 1189–1192.

    Article  Google Scholar 

  • Breakwell, G. M. (1994). The echo of power: a framework for social psychological research (The Myers Lecture). The Psychologist, 7(2), 65–72.

    Google Scholar 

  • Brewer, N. T., Chapman, G. B., Gibbons, F. X., Gerrard, M., McCaul, K. D., & Weinstein, N. D. (2007). Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health psychology : official journal of the Division of Health Psychology, American Psychological Association, 26(2), 136–145.

    Article  Google Scholar 

  • Bronfman, N. C., & Cifuentes, L. A. (2003). Risk perception in a developing country: the case of Chile. Risk Analysis, 23(6), 1271–1285.

    Article  Google Scholar 

  • Bryce, T., & Gray, D. (2004). Tough acts to follow: the challenges to science teachers presented by biotechnological progress. International Journal of Science Education, 26(6), 717–733.

    Article  Google Scholar 

  • Burgess, A. (2015). Social construction of risk. In H. Cho, T. Reimer, & K. A. McComas (Eds.), The Sage handbook of risk communication (pp. 56–68). Los Angeles, Calif: Sage.

    Google Scholar 

  • Bybee, R. W. (1997). Toward an understanding of scientific literacy. In W. Gräber & C. Bolte (Eds.), Scientific literacy (pp. 37–68). Kiel: IPN.

    Google Scholar 

  • Bybee, R. W., & McCrae, B. (2009). PISA Science 2006: Implications for science teachers and teaching. Arlington: NSTA Press.

    Google Scholar 

  • Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45(2), 205–223.

    Article  Google Scholar 

  • Colucci-Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: an ecological framework for education. Science Education, 90(2), 227–252.

    Article  Google Scholar 

  • Covello, V. T., & Merkhofer, M. W. (1993). Risk assessment methods: approaches for assessing health and environmental risks. New York: Plenum Press.

    Book  Google Scholar 

  • Cross, R. T. (1993). The risk of risks: a challenge and a dilemma for science and technological education. Research in Science & Technological Education, 11(2), 171–183.

    Article  Google Scholar 

  • Cullipher, S., Sevian, H., & Talanquer, V. (2015). Reasoning about benefits, costs, and risks of chemical substances: mapping different levels of sophistication. Chemical Education Research and Practice, 16(2), 377–392.

    Article  Google Scholar 

  • Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40(2), 133–148.

    Article  Google Scholar 

  • DeBoer, G. E. (2000). Scientific literacy: another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582–601.

    Article  Google Scholar 

  • DeHaan G, d., Kamp, G., Lerch, A., Martignon, L., Müller-Christ, G., & Nutzinger, H. (2008). Nachhaltigkeit und Gerechtigkeit. New York: Springer-Verlag.

    Google Scholar 

  • Krebshilfe, D. (Ed.). (2016). Brustkrebs: Ein Ratgeber für Betroffene, Angehörige und Interessierte: Die blauen Ratgeber. Bonn: Deutsche Krebshilfe eV.

    Google Scholar 

  • DfE Education Department for. (2014a). Science programmes of study: key stage 4 national curriculum in England.

  • DfE Education Department for (2014b). The national curriculum in England Key stages 3 and 4 framework document.

  • Dietz, T. M., Frey, R. S., & Rosa, E. (2002). Risk, technology, and society. In R. E. Dunlap & W. Michelson (Eds.), Handbook of environmental sociology (p. 46). Westport, Conn.: Greenwood Press.

  • Dillon, J., & Gill, P. (2001). Risk, environment and health: aspects of policy and practice. School Science Review, 83(303), 65–73.

    Google Scholar 

  • Donnelly, J. (2006). The intellectual positioning of science in the curriculum, and its relationship to reform. Journal of Curriculum Studies, 38(6), 623–640.

    Article  Google Scholar 

  • Douglas, M. (1966). Purity and danger: an analysis of the concepts of pollution and taboo. London: Routledge and Kegan Paul.

    Book  Google Scholar 

  • Douglas, M. (1985). Risk acceptability according to the social sciences. Social research perspectives : occasional reports on current topics, 11 Retrieved from http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=1069554.

  • Douglas, M., & Wildavsky, A. (1983). Risk and culture: an essay on the selection of technological and environmental dangers. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=930898

  • Eijkelhof, H. (1986). Dealing with acceptable risk in science education: the case of ionizing radiation. Ethics and social responsibility in science education, 2(189), 189–198.

    Article  Google Scholar 

  • Eijkelhof, H. M. C. (1990). Radiation and risk in physics education. Utrecht: Uitgeverij CDβ Press.

    Google Scholar 

  • Eijkelhof, H. (1996). Radiation risk and science education. Radiation Protection Dosimetry, 68(3), 273–278.

    Article  Google Scholar 

  • Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing the nature of science for science education: scientific knowledge, practices and other family categories. Contemporary trends and issues in science education: Vol. 43. Dordrecht: Springe.

    Google Scholar 

  • Evers, A., & Nowotny, H. (1987). Über den Umgang mit Unsicherheit: Die Entdeckung der Gestaltbarkeit von Gesellschaft Vol. 672. Frankfurt am Main. Berlin: Suhrkamp.

    Google Scholar 

  • Finucane, M. L., Slovic, P., & Mertz, C. K. (2000). Public perception of the risk of blood transfusion. Transfusion, 40(8), 1017–1022.

    Article  Google Scholar 

  • Finucane, M. L., & Holup, J. L. (2005). Psychosocial and cultural factors affecting the perceived risk of genetically modified food: an overview of the literature. Social Science & Medicine (1982), 60(7), 1603–1612.

    Article  Google Scholar 

  • Fischer, R. (2009). Die Europäische Union auf dem Weg zu einer vorsorgenden Risikopolitik?: Ein policy-analytischer Vergleich der Regulierung von BSE und transgenen Lebensmitteln. Wiesbaden: VS Verlag für Sozialwissenschaften / GWV Fachverlage GmbH Wiesbaden Retrieved from https://doi.org/10.1007/978-3-531-91347-6.

    Google Scholar 

  • Fischhoff, S., Lichtenstein, R., & Combs. (1978). How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sciences, 9(2), 127–152.

    Article  Google Scholar 

  • Fischhoff, B. (1983). “Acceptable risk”: the case of nuclear power. Journal of Policy Analysis and Management, 2(4), 559.

    Article  Google Scholar 

  • Fives, H., Huebner, W., Birnbaum, A. S., & Nicolich, M. (2014). Developing a measure of scientific literacy for middle school students. Science Education, 98(4), 549–580.

    Article  Google Scholar 

  • Fleming, R. (1986a). Adolescent reasoning in socio-scientific issues, part I: Social cognition. Journal of Research in Science Teaching, 23(8), 677–687.

    Article  Google Scholar 

  • Fleming, R. (1986b). Adolescent reasoning in socio-scientific issues, part II: nonsocial cognition. Journal of Research in Science Teaching, 23(8), 689–698.

    Article  Google Scholar 

  • Foucault, M. (1983). Structuralism and post-structuralism. Telos, 55, 206.

    Google Scholar 

  • Gal, I. (2012). Developing probability literacy: needs and pressures stemming from frameworks of adult competencies and mathematics curricula. In Proceedings of the 12th International Congress on Mathematical Education (8 July–15 July, 2012), 1–7.

  • Gardner, G. E., & Jones, M. G. (2011). Science instructors’ perceptions of the risks of biotechnology: implications for science education. Research in Science Education, 41(5), 711–738.

    Article  Google Scholar 

  • Garfield, J. B., & Gal, I. (1999). Assessment and Statistics Education: Current Challenges and Directions, 67(1), 1–12.

    Google Scholar 

  • Geiger, W. (1998). Qualitätslehre: Einführung · Systematik · Terminologie (3., neu bearbeitete und ergänzte Auflage). Wiesbaden: Vieweg+Teubner Verlag Imprint.

    Book  Google Scholar 

  • Giddens, A. (2011). Runaway world. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xat&AN=590219

  • Gigerenzer, G. (2006). Out of the frying pan into the fire: behavioral reactions to terrorist attacks. Risk analysis : an official publication of the Society for Risk Analysis, 26(2), 347–351.

    Article  Google Scholar 

  • Gigerenzer, G., & Martignon, L. (2015). Risikokompetenz in der Schule lernen. Lernen und Lernstörungen, 4(2), 91–98.

    Article  Google Scholar 

  • Gott, R., Duggan, S., & Johnson, P. (2006). What do practising applied scientists do and what are the implications for science education? Research in Science & Technological Education, 17(1), 97–107.

    Article  Google Scholar 

  • Gräber, W., & Bolte, C. (Eds.). (1997). Scientific literacy. Kiel: IPN.

    Google Scholar 

  • Habermas, J. (1984). The theory of communicative action (Vol. 1). Boston: Beacon.

    Google Scholar 

  • Habermas, J. (1987). The theory of communicative action: lifeworld and system: a critique of functionalist reason (Vol. 2). Boston: Beacon.

    Google Scholar 

  • Hansson, S. O. (2010). Risk: objective or subjective, facts or values. Journal of Risk Research, 13(2), 231–238.

    Article  Google Scholar 

  • Hodson, D. (1992). In search of a meaningful relationship: an exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541–562.

    Article  Google Scholar 

  • Hoos, I. (1980). Risk assessment in social perspective. Perceptions of risk, 37–85.

  • Hopkin, P. (2017). Fundamentals of risk management: understanding, evaluating and implementing effective risk management. United Kingdom: Kogan Page Publishers.

    Google Scholar 

  • Howes, R. W. (1975). Radiation risks—a possible teaching topic? Physics Education, 10(6), 412.

    Article  Google Scholar 

  • Hug, T. (2012). Media competence and visual literacy-towards considerations beyond literacies. Periodica Polytechnica. Social and Management Sciences, 20(2), 115.

  • Jasanoff, S. (1998). The political science of risk perception. Reliability Engineering & System Safety, 59(1), 91–99.

    Article  Google Scholar 

  • Jenkins, E. (2000). Science for all: time for a paradigm shift. In J. Millar (Ed.), Improving science education: the contribution of research (pp. 207–226). UK: McGraw-Hill Education.

    Google Scholar 

  • Jenkins, E. W. (1990). Scientific literacy and school science education. School Science Review, 71(256), 43–51.

    Google Scholar 

  • Kampa, N., & Koller, O. (2016). German National Proficiency Scales in biology: internal structure, relations to general cognitive abilities and verbal skills. Science Education, 100(5), 903–922.

    Article  Google Scholar 

  • Kasperson, R. E., Renn, O., Slovic, P., Brown, H. S., Emel, J., Goble, R., et al. (1988). The social amplification of risk: a conceptual framework. Risk Analysis, 8(2), 177–187.

    Article  Google Scholar 

  • Keren, G., & Eijkelhof, H. (1990). Prior knowledge and risk communication: the case of nuclear radiation and X-rays. In R. E. Kasperson & P. J. M. Stallen (Eds.), Technology, risk, and society, an international series in risk analysis: Vol. 4. Communicating risks to the public. International perspectives (pp. 145–155). Dordrecht: Springer.

    Google Scholar 

  • Khishfe, R. (2013). Explicit nature of science and argumentation instruction in the context of socioscientific issues: an effect on student learning and transfer. International Journal of Science Education, 36(6), 974–1016.

    Article  Google Scholar 

  • Klebl, M., & Borst, T. (2010). Risikokompetenz als Teil der Medienkompetenz SSSWissensformen im Web 2.0. In B. Herzig, D. M. Meister, H. Moser, & H. Niesyto (Eds.), Jahrbuch Medienpädagogik 8. Medienkompetenz und Web 2.0 (1st ed., pp. 239–254). Wiesbaden: VS Verlag für Sozialwissenschaften / GWV Fachverlage GmbH Wiesbaden.

    Google Scholar 

  • KMK, K. (2005a). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss.

  • KMK, K. (2005b). Bildungsstandards im Fach Chemie für den Mittleren Schulabschluss. München: Wolters Kluwer.

    Google Scholar 

  • KMK, K. (2005c). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss.

  • KMK, K. (2005d). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss. München: Wolters Kluwer.

    Google Scholar 

  • Knoll, L. J., Magis-Weinberg, L., Speekenbrink, M., & Blakemore, S.-J. (2015). Social influence on risk perception during adolescence. Psychological Science, 26(5), 583–592.

    Article  Google Scholar 

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310.

    Article  Google Scholar 

  • Kolstø, S. D. (2006). Patterns in students’ argumentation confronted with a risk-focused socio-scientific issue. International Journal of Science Education, 28(14), 1689–1716.

    Article  Google Scholar 

  • Latten, S., Martignon, L., Monti, M., & Multmeier, J. (2011). Die Förderung erster Kompetenzen für den Umgang mit Risiken bereits in der Grundschule: Ein Projekt von RIKO-STAT und dem Harding Center. Stochastik in der Schule, 31(1), 17–25.

    Google Scholar 

  • Laugksch, R. C. (2000). Scientific literacy: a conceptual overview. Science Education, 84(1), 71–94.

    Article  Google Scholar 

  • Layton, D. (1993). Inarticulate science?: perspectives on the public understanding of science and some implications for science education. Studies in Education.

  • Lee, H., Yoo, J., Choi, K., Kim, S.-W., Krajcik, J., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific issues as a vehicle for promoting character and values for global citizens. International Journal of Science Education, 35(12), 2079–2113.

    Article  Google Scholar 

  • Levinson, R., & Turner, S. (2001). Valuable lessons. London: The Wellcome Trust.

    Google Scholar 

  • Levinson, R., Kent, P., Pratt, D., Kapadia, R., & Yogui, C. (2012). Risk-based decision making in a scientific issue: a study of teachers discussing a dilemma through a microworld. Science Education, 96(2), 212–233.

    Article  Google Scholar 

  • Lijnse, P. L., Eijkelhof, H. M. C., Klaassen, C. W. J. M., & Scholte, R. L. J. (1990). Pupils’ and mass-media ideas about radioactivity. International Journal of Science Education, 12(1), 67–78.

    Article  Google Scholar 

  • Lupton, D., & Tulloch, J. (2002a). “Risk is part of your life”: risk epistemologies among a group of Australians. Sociology, 36(2), 317–334.

  • Lupton, D., & Tulloch, J. (2002b). “Life would be pretty dull without risk”: voluntary risk-taking and its pleasures. Health, Risk & Society, 4(2), 113–124.

  • Markowitz, J. (1991). Kommunikation über Risiken: Eine Problemskizze. Bielefeld: University of Bielefeld.

    Google Scholar 

  • Marris, C., Langford, I., Saunderson, T., & O'Riordan, T. (1997). Exploring the “psychometric paradigm”: comparisons between aggregate and individual analyses. Risk Analysis, 17(3), 303–312.

    Article  Google Scholar 

  • McDaniels, T. L. (1998). Ten propositions for untangling descriptive and prescriptive lessons in risk perception findings. Reliability Engineering & System Safety, 59(1), 129–134.

    Article  Google Scholar 

  • Metzner-Szigeth, A. (2009). Contradictory approaches?: on realism and constructivism in the social sciences research on risk, technology and the environment. Futures, 41(3), 156–170.

    Article  Google Scholar 

  • Millar, R. (2006). Twenty first century science: insights from the design and implementation of a scientific literacy approach in school science. International Journal of Science Education, 28(13), 1499–1521.

    Article  Google Scholar 

  • Morgan, M. G. (1990). Choosing and managing technology-induced risk. In T. S. Glickman & M. Gough (Eds.), Readings in risk (pp. 17–28). Washington, D.C., Baltimore: Resources for the Future; Distributed by the Johns Hopkins University Press.

    Google Scholar 

  • Nowotny, H., & Eisikovic, R. (1990). Entstehung, Wahrnehmung und Umgang mit Risiken: Entstehung. Schweizerischer Wissenschaftsrat: Wahrnehmung und Umgang mit Risiken.

    Google Scholar 

  • NRC, The National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Board on science education, division of behavioral and social sciences and education. Washington, DC: The National Academies Press.

    Google Scholar 

  • Lead States, N. G. S. S. (2013). Next generation science standards: for states, by states. Washington, DC: The National Academies Press.

    Google Scholar 

  • OECD. (1999). Measuring student knowledge and skills: a new framework for assessment: Organisation for economic co-operation and development, Paris (US $26). Web site: www.oecd.org. Retrieved from http://www.oecd.org/edu/school/programmeforinternationalstudentassessmentpisa/33693997.pdf.

  • OECD. (2013). PISA 2012 assessment and analytical framework: mathematics. In Reading, science, problem solving and financial literacy. Paris: OECD Publishing.

    Google Scholar 

  • Oltedal, S., Moen, B.-E. M., Klempe, H., & Rundmo, T. (2004). Explaining risk perception: an evaluation of cultural theory, 85.

  • OME, Ontario Ministry of Education. (2008a). The Ontario curriculum, grades 11 and 12: science. Ontario: Ontario Ministry of Education.

    Google Scholar 

  • OME, Ontario Ministry of Education. (2008b). The Ontario curriculum, grades 9 and 10: science. Ontario: Ontario Ministry of Education.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ideas-about-science should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Article  Google Scholar 

  • Osborne, Jason W., and Anna B. Costello. (2004). Sample size and subject to item ratio in principal components analysis. Practical Assessment, Research & Evaluation. (8), 9: 11.

  • Paling, J. (2003). Strategies to help patients understand risks. BMJ: British Medical Journal, 327(7417), 745.

  • Plapp, T. (2004). Wahrnehmung von Risiken aus Naturkatastrophen: Eine empirische Untersuchung in sechs gefährdeten Gebieten Süd- und Westdeutschlands. In U. Werner (Ed.), Karlsruher Reihe II. Risikoforschung und Versicherungsmanagement (Vol. 2). Karlsruhe: VVW Karlsruhe.

    Google Scholar 

  • Ramji, R., Arnetz, J., Nilsson, M., Jamil, H., Norström, F., Maziak, W., et al. (2015). Determinants of waterpipe use amongst adolescents in northern Sweden: a survey of use pattern, risk perception, and environmental factors. BMC Research Notes, 8, 441.

    Article  Google Scholar 

  • Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: teaching socio-scientific issues: McGraw-Hill Education (UK). Retrieved from https://books.google.de/books?hl=de&lr=&id=uBbQrFt33DMC&oi=fnd&pg=PP1&dq=Science+education+for+citizenship&ots=m3u7wR16Eb&sig=_iv6mDAZia6-XOeuSRwSnk1o4lI

  • Ravetz, J. R. (1997). Simple scientific truths and uncertain policy realities: implications for science education. Studies in Science Education, 30(1), 5–18.

    Article  Google Scholar 

  • Renn, O. (1992). Concepts of risk: a classification.

    Google Scholar 

  • Renn, O. (1998a). Three decades of risk research: accomplishments and new challenges. Journal of Risk Research, 1(1), 49–71.

    Article  Google Scholar 

  • Renn, O. (1998b). The role of risk perception for risk management. Reliability Engineering & System Safety, 59(1), 49–62.

    Article  Google Scholar 

  • Renn, O. (2008). Concepts of risk: an interdisciplinary review part 1: Disciplinary risk concepts. GAIA - Ecological Perspectives for Science and Society, 17(1), 50–66.

    Article  Google Scholar 

  • Roberts, D. (2007). Scientific literacy/science literacy. In N. G. Lederman & S. K. Abell (Eds.), International handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Rohrmann, B. (2005). Risk attitude scales: concepts. Utilizations: Questionnaires.

    Google Scholar 

  • Rosa, E. A. (1998). Metatheoretical foundations for post-normal risk. Journal of Risk Research, 1(1), 15–44.

    Article  Google Scholar 

  • Royal Society. (1985). The public understanding of science. London: Royal Society.

    Google Scholar 

  • Ryder. (2001). Identifying science understanding for functional scientific literacy.

  • Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation. The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2009). Scientific literacy, PISA, and socioscientific discourse: assessment for progressive aims of science education. Journal of Research in Science Teaching, 46(8), 909–921.

    Article  Google Scholar 

  • Savadori, L., Savio, S., Nicotra, E., Rumiati, R., Finucane, M., & Slovic, P. (2004). Expert and public perception of risk from biotechnology. Risk analysis : an official publication of the Society for Risk Analysis, 24(5), 1289–1299.

    Article  Google Scholar 

  • Shavelson, R. J., Young, D. B., Ayala, C. C., Brandon, P. R., Furtak, E. M., Ruiz-Primo, M. A., et al. (2008). On the impact of curriculum-embedded formative assessment on learning: a collaboration between curriculum and assessment developers. Applied Measurement in Education, 21(4), 295–314.

    Article  Google Scholar 

  • Short, J. F. (1984). The social fabric at risk: toward the social transformation of risk analysis. American Sociological Review, 49(6), 711.

    Article  Google Scholar 

  • Short, J. F. (1989). Part 3: on defining, describing and explaining elephants (and reactions to them): hazards, disasters, and risk analysis. International Journal of Mass Emergencies and Disasters, 7(3), 397–418.

    Google Scholar 

  • Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). The use of scientific literacy taxonomy for assessing the development of chemical literacy among high-school students. Chemical Education Research and Practice, 7(4), 203–225.

    Article  Google Scholar 

  • Siegrist, M., Keller, C., Kastenholz, H., Frey, S., & Wiek, A. (2007). Laypeople’s and experts’ perception of nanotechnology hazards. Risk analysis : an official publication of the Society for Risk Analysis, 27(1), 59–69.

    Article  Google Scholar 

  • Siegrist, M., Keller, C., & Kiers, H. A. L. (2005). A new look at the psychometric paradigm of perception of hazards. Risk Analysis, 25(1), 211–222.

    Article  Google Scholar 

  • Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of Economics, 69(1), 99–118.

    Article  Google Scholar 

  • Simonneaux, L., Panissal, N., & Brossais, E. (2013). Students’ perception of risk about nanotechnology after an SAQ teaching strategy. International Journal of Science Education, 35(14), 2376–2406.

    Article  Google Scholar 

  • Singleton, G., Herzog, H., & Ansolabehere, S. (2009). Public risk perspectives on the geologic storage of carbon dioxide. International Journal of Greenhouse Gas Control, 3(1), 100–107.

    Article  Google Scholar 

  • Sjöberg, L. (2004). Explaining individual risk perception: the case of nuclear waste. Risk Management, 6(1), 51–64.

    Article  Google Scholar 

  • Sjöberg, L., Moen, B. E., & Rundmo, T. (2004). Explaining risk perception. An evaluation of the psychometric paradigm in risk perception research. Trondheim: Rotunde.

    Google Scholar 

  • Slovic, P., Peters, E., Grana, J., Berger, S., & Dieck, G. S. (2007). Risk perception of prescription drugs: results of a national survey. Therapeutic Innovation & Regulatory Science, 41(1), 81–100.

    Google Scholar 

  • Slovic, P. (1987). Perception of risk. Science, 236(4799), 280–285 Retrieved from http://science.sciencemag.org/content/236/4799/280.short.

    Article  Google Scholar 

  • Slovic, P. (1999). Trust, emotion, sex, politics, and science: surveying the risk-assessment battlefield. Risk Analysis, 19(4), 689–701.

    Google Scholar 

  • Slovic, P. (2001). The risk game. Journal of Hazardous Materials, 86(1–3), 17–24.

    Article  Google Scholar 

  • Slovic, P., Fischhoff, B., & Lichtenstein, S. (1982). Why study risk perception? Risk Analysis, 2(2), 83–93.

    Article  Google Scholar 

  • Solomon, J. (1990). The discussion of social issues in the science classroom. Studies in Science Education, 18(1), 105–126.

    Article  Google Scholar 

  • Solomon, J. (2003). Risk: why don’t they listen to us? Studies in Science Education, 39(1), 125–141.

    Article  Google Scholar 

  • Standards and Testing Agency. (2013). Standards and Testing Agency Framework Document. Retrieved from http://webarchive.nationalarchives.gov.uk/20130502102428/http://media.education.gov.uk/assets/files/pdf/s/standards%20and%20testing%20agency%20framework%20document

  • Till, C. (2014). Fostering risk literacy in elementary school. IEJME-Mathematics Education.

  • Trumbo, C. W. (2002). Information processing and risk perception: an adaptation of the heuristic-systematic model. Journal of Communication, 52(2), 367–382.

    Article  Google Scholar 

  • Tulloch, J., & Lupton, D. (2002). Consuming risk, consuming science: the case of GM foods. Journal of Consumer Culture, 2(3), 363–383.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1975). Judgment under uncertainty: heuristics and biases. In D. Wendt & C. Vlek (Eds.), Theory and decision library, an international series in the philosophy and methodology of the social and behavioral sciences: Vol. 11. Utility, probability, and human decision making. Selected proceedings of an interdisciplinary research conference, Rome, 3–6 September, 1973 (pp. 141–162). Dordrecht: Springer.

  • Wachinger, G., Renn, O., Begg, C., Kuhlicke, C. (2013). The risk perception paradox—implications for governance and communication of natural hazards. Risk analysis, 33(6), 1049–1065.

  • Walliser, B. (2008). Cognitive economics. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg. Retrieved from.

  • Wilkinson, I. (2001). Social theories of risk perception: at once indispensable and insufficient. Current Sociology, 49(1), 1–22.

    Article  Google Scholar 

  • Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343–367.

    Article  Google Scholar 

  • Zinn, J. O., & Taylor-Goodby, P. (2006). Risk as an interdisciplinary research area. In P. Taylor-Gooby (Ed.), Risk in social science (1st ed., pp. 20–51),New York NY u.a.: Oxford University Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Hansen.

Ethics declarations

Conflicts of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansen, J., Hammann, M. Risk in Science Instruction. Sci & Educ 26, 749–775 (2017). https://doi.org/10.1007/s11191-017-9923-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-017-9923-1

Navigation