Skip to main content
Log in

Obstacles to Mathematization in Physics: The Case of the Differential

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The process of the mathematization of physical situations through differential calculus requires an understanding of the justification for and the meaning of the differential in the context of physics. In this work, four different conceptions about the differential in physics are identified and assessed according to their utility for the mathematization process. We also present an empirical study to probe the conceptions about the differential that are used by students in physics, as well students’ perceptions of how they are expected to use differential calculus in physics. The results support the claim that students have a quasi-exclusive conception of the differential as an infinitesimal increment and that they perceive that their teachers only expect them to use differential calculus in an algorithmic way, without a sound understanding of what are they doing and why. These results are related to the lack of attention paid by conventional physics teaching to the mathematization process. Finally, some proposals for action are put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Artigue et al. (1989), Berry and Nyman (2003), Ferrini-Mundy and Gaudard (1992), Ferrini-Mundy and Graham (1991), Labraña (2001), Mahir (2009), Nagle et al. (2013), Orton (1983a, b), Porter and Masingila (2000), Schneider (1991, 1992), Tall (1985, 1992), Thompson (1994), among many others.

  2. See, for example, Meredith and Marrongelle (2008), Hu and Rebello (2013), Sealey (2014), Von Korff and Rebello (2014), and Wilcox et al. (2013).

References

  • Aleksandrov, A. D., Kolmogorov, A. N., & Laurentiev, M. A. (1956). La Matemática: su contenido, métodos y significado (p. 1985). Madrid: Alianza Universidad.

    Google Scholar 

  • Alibert, D., Artigue, M., Courdille, J. M., Grenier, D., Hallez, M., Legrand, M., Ménigaux, J., Richard, F., & Viennot, L. (1989). Procedures différentiellesdans les enseignements de mathematiqueset de physique au niveau du premier cycle universitaire. Col. Brochures 74. Paris: IREM et LDPES Paris 7. Retrieved March 11, 2015 from http://www.irem.univ-paris-diderot.fr/up/publications/IPS97040.pdf

  • Artigue, M. (1989). Le passage de la différentielletotale a la notiond’applicationlinéairetangent. In Procedures différentiellesdans les enseignements de mathematiqueset de physique au niveau du premier cycle universitaire (Annexe I). Col. Brochures 74. Paris: IREM et LDPES Paris 7. Retrieved March 11, 2015 from http://www.irem.univ-paris-diderot.fr/up/publications/IPS97040.pdf

  • Artigue, M., Menigaux, J., & Viennot, L. (1989). Questionnaires de travail sur les differentielles. Col. Brochures 76. Paris: IREM et LDPES Paris 7. Retrieved March 11, 2015 from http://www.irem.univ-paris-diderot.fr/up/publications/IPS97042.pdf

  • Artigue, M., & Viennot, L. (1987). Some aspects of students’ conceptions and difficulties about differentials. In J. D. Novak (Ed.), Second international seminar misconceptions and educational strategies in science and mathematics (Vol. III) (pp. 18–32). Ithaca, NY: Cornell University.

    Google Scholar 

  • Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of calculus. Journal of Mathematical Behavior, 22(4), 481–497.

    Article  Google Scholar 

  • Bressoud, D. M. (1992). Why do we teach calculus? The American Mathematical Monthly, 99(7), 615–617.

    Article  Google Scholar 

  • Del Castillo, F. (1980). Análisis Matemático II. Madrid: Alhambra.

    Google Scholar 

  • Dieudonné, J. (1960). Fundamentos de Análisis Moderno. Barcelona: Reverté.

    Google Scholar 

  • Dray, T., & Manogue, C. A. (2010). Putting differentials back into calculus. The College Mathematics Journal, 41(2), 90–100.

    Article  Google Scholar 

  • Dunn, J. W., & Barbanel, J. (2000). One model for an integrated math/physics course focusing on electricity and magnetism and related calculus topics. American Journal of Physics, 68(8), 749–757.

    Article  Google Scholar 

  • Engelbrecht, J., Harding, A., & Potgieter, M. (2005). Undergraduate students’ performance and confidence in procedural and conceptual mathematics. International Journal of Mathematical Education in Science and Technology, 36(7), 701–712.

    Article  Google Scholar 

  • Ferrini-Mundy, J., & Gaudard, M. (1992). Secondary school calculus: Preparation or pitfall in the study of college calculus? Journal for Research in Mathematics Education, 23(1), 56–71.

    Article  Google Scholar 

  • Ferrini-Mundy, J., & Graham, G. K. (1991). An overview of the calculus curriculum reform effort: Issues for learning, teaching, and curriculum development. The American Mathematical Monthly, 98(7), 627–635.

    Article  Google Scholar 

  • Ferrini-Mundy, J., & Lauten, D. (1994). Learning about calculus learning. The Mathematics Teacher, 87(2), 115–121.

    Google Scholar 

  • Freudenthal, M. (1973). Mathematics as an educational task. Dordrecht-Holland: D. Reidel Publishing Company.

    Google Scholar 

  • Habre, S., & Abboud, M. (2006). Students’ conceptual understanding of a function and its derivative in an experimental calculus course. Journal of Mathematical Behavior, 25(1), 57–72.

    Article  Google Scholar 

  • Hallez, M. (1989). Les ouvrages de mathematiques pour l’enseignement (XIXème–XXème). In Procedures différentiellesdans les enseignements de mathematiqueset de physique au niveau du premier cycle universitaire (Annexe III). Col. Brochures 74. Paris: IREM et LDPES Paris 7. Retrieved March 11, 2015 from http://www.irem.univ-paris-diderot.fr/up/publications/IPS97040.pdf

  • Hu, D., & Rebello, N. S. (2013). Understanding student use of differentials in physics integration problems. Physical Review ST Physics Education Research, 9, 020108.

    Article  Google Scholar 

  • Keisler, H. J. (2000). Elementary calculus: An infinitesimal approach. Retrieved March 11, 2015 from http://www.math.wisc.edu/~keisler/calc.html

  • Kleiner, I. (2001). History of the infinitely small and the infinitely large in calculus. Educational Studies in Mathematics, 48, 137–174.

    Article  Google Scholar 

  • Labraña, A. (2001). Evaluación de las concepciones de los alumnos de COU y Bachillerato acerca del significado del cálculo integral (Review PhD Thesis). Enseñanza de las Ciencias, 19(3), 481–482.

  • López-Gay, R. (2002). La introducción y utilización del concepto de diferencial en la enseñanza de la Física.Análisis de la situación actual y propuesta para su mejora (PhD dissertation). Madrid: U. Autónoma.

  • Mahir, N. (2009). Conceptual and procedural performance of undergraduate students in integration. International Journal of Mathematical Education in Science and Technology, 40(2), 201–211.

    Article  Google Scholar 

  • Martínez Torregrosa, J., López-Gay, R., & Gras-Martí, A. (2006). Mathematics in physics education: scanning historical evolution of the differential to find a more appropriate model for teaching differential calculus in physics. Science & Education, 15(5), 447–462.

    Article  Google Scholar 

  • Martínez Torregrosa, J., López-Gay, R., Gras-Martí, A., & Torregrosa, G. (2002). La diferencial no es un incremento infinitesimal. Evolución del concepto de diferencial y su clarificación en la enseñanza de la física. Enseñanza de las Ciencias, 20(2), 271–283.

    Google Scholar 

  • Meredith, D. C., & Marrongelle, K. A. (2008). How students use mathematical resources in an electrostatics context. American Journal of Physics, 76, 570–578.

    Article  Google Scholar 

  • Moreno, M. (2001). El profesor universitario de matemáticas: estudio de las concepciones y creencias acerca de la enseñanza de las ecuaciones diferenciales (Review PhD Thesis). Enseñanza de las Ciencias, 19(3), 479–480.

  • Mura, R. (1993). Images of mathematics held by university teachers of mathematical sciences. Educational Studies in Mathematics, 25(4), 375–385.

    Article  Google Scholar 

  • Mura, R. (1995). Images of mathematics held by university teachers of mathematics education. Educational Studies in Mathematics, 28(4), 385–399.

    Article  Google Scholar 

  • Nagle, C., Moore-Russo, D., Viglietti, J., & Martin, K. (2013). Calculus students’ and instructors’ conceptualizations of slope: A comparison across academic levels. International Journal of Science and Mathematics Education, 11(6), 1491–1515.

    Article  Google Scholar 

  • Nagy, P., Traub, R. E., MacRury, K., & Klaiman, R. (1991). High school calculus: Comparing the content of assignments and tests. Journal for Research for Mathematics Education, 22(1), 69–75.

    Article  Google Scholar 

  • Orton, A. (1983a). Students’ understanding of integration. Educational Studies in Mathematics, 14, 1–18.

    Article  Google Scholar 

  • Orton, A. (1983b). Students’ understanding of differentiation. Educational Studies in Mathematics, 14, 235–250.

    Article  Google Scholar 

  • Ostebee, A., & Zorn, P. (1997). Pro choice. The American Mathematical Monthly, 104(8), 728–730.

    Article  Google Scholar 

  • Pereira de Ataíde, A. R., & Greca, I. M. (2013). Epistemic views of the relationship between physics and mathematics: Its influence on the approach of undergraduate students to problem solving. Science & Education, 22(6), 1405–1421.

    Article  Google Scholar 

  • Porter, M. K., & Masingila, J. O. (2000). Examining the effects of writing on conceptual and procedural knowledge in calculus. Educational Studies in Mathematics, 42(2), 165–177.

    Article  Google Scholar 

  • Redish, E. F. (2006). Problem solving and the use of Math in Physics courses. Invited talk presented at the conference, World View on Physics Education in 2005: Focusing on World change. Delhi, 2005. Retrieved March 11, 2015 from http://arxiv.org/abs/physics/0608268v1

  • Rossi, P. (1997). El Nacimiento de la Ciencia Moderna en Europa. Barcelona: Crítica—Grijalbo Mondadori, 1998.

  • Schneider, M. (1991). Un obstacle epistémologique soulevé par des ‘découpages infinis’ des surfaces et des solides. Recherches en Didactique des Mathématiques, 11(23), 241–294.

    Google Scholar 

  • Schneider, M. (1992). A propos de l’apprentissage du taux de variation instantane. Educational Studies in Mathematics, 23, 317–350.

    Article  Google Scholar 

  • Sealey, V. (2014). A framework for characterizing student understanding of Riemann sums and definite integrals. Journal of Mathematical Behavior, 33, 230–245.

    Article  Google Scholar 

  • Sofronas, K., De Franco, T., Vinsonhaler, C., Gorgievski, N., Schroeder, L., & Hamelin, C. (2011). What does it mean for a student to understand the first-year calculus? Perspectives of 24 experts. Journal of Mathematical Behavior, 30(2), 131–148.

    Article  Google Scholar 

  • Speiser, B., & Walter, C. (1994). Catwalk: First-semester calculus. Journal of Mathematical Behavior, 13, 135–152.

    Article  Google Scholar 

  • Tall, D. (1985). Understanding the calculus. Mathematics Teaching, 110, 49–53.

    Google Scholar 

  • Tall, D. (1992). Current difficulties in the teaching of mathematical analysis at university: An essay review of ‘Yet another introduction to analysis’. ZDM, 24(2), 37–42.

    Google Scholar 

  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229–274.

    Article  Google Scholar 

  • Turégano, P. (1998). Del área a la integral. Un estudio en el contexto educativo. Enseñanza de las. Ciencias, 16(2), 233–250.

    Google Scholar 

  • Uhden, O., Karam, R., Pietrocola, M., & Pospiech, G. (2012). Modelling mathematical reasoning in physics education. Science & Education, 21(4), 485–506.

    Article  Google Scholar 

  • Von Korff, J., & Rebello, N. S. (2014). Distinguishing between ‘change’ and ‘amount’ infinitesimals in first-semester calculus-based physics. American Journal of Physics, 82(7), 695–705.

    Article  Google Scholar 

  • White, P., & Mitchelmore, M. (1996). Conceptual knowledge in introductory calculus. Journal for Research in Mathematics Education, 27(1), 79–95.

    Article  Google Scholar 

  • Wilcox, B. R., Caballero, M. D., Pepper, R. E., & Pollock, S. J. (2013). Upper-division student understanding of Coulomb’s law: Difficulties with continuous charge distributions. AIP Conference Proceedings, 1513, 418.

    Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for careful reading and insightful suggestions that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. López-Gay.

Appendix: Document and Guidelines for the Semi-Structured Interview

Appendix: Document and Guidelines for the Semi-Structured Interview

PROBLEM STATEMENT: We know that the density of air (ρ) decreases with height (h) according to the following equation: ρ = 1.29·(1–0.000125·h). That equation is written for the International System, that is, if h is written in metres, density is obtained in kg/m3. The value h = 0 represents sea level. What would be the mass of a cylindrical column of air measuring 1 m 2 at the base that rises 2000 m above sea level?

figure a
  1. 1.

    Why do you take that step? (Be it the step from increment to differential or from incremental quotient to differential quotient)

  2. 2.

    What is the meaning of that expression? (We insist on searching for an explanation that goes beyond the use of key words or literal reading)

  3. 3.

    What could be the value of dm, dV…? (If they answer with a numerical value, we check on its meaning and functional nature)

  4. 4.

    How must that expression be read? Is it correct to isolate the differential? (We are referring to the expression of the derivative, and want to know if they consider it as a true differentials quotient)

  5. 5.

    What is the meaning of those integrals? (They may adhere to the idea of the anti-derivative, or go further and identify Riemann sums)

  6. 6.

    Why is the result of that integral precisely that? (We will inquire to see if they are capable of justifying why the integral of a differential is a macroscopic increment, or why infinite sums are necessarily calculated using anti-derivatives)

  7. 7.

    Do you understand properly when your teacher or the textbook use differential calculus in physics lessons?

  8. 8.

    Where have you best learnt the use and meaning of differential calculus, in physics or maths lessons?

  9. 9.

    In general, do you think that the use of differential calculus makes students like physics more or less? Why do you think so? And do you think that is the case for you too?

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Gay, R., Martínez Sáez, J. & Martínez Torregrosa, J. Obstacles to Mathematization in Physics: The Case of the Differential. Sci & Educ 24, 591–613 (2015). https://doi.org/10.1007/s11191-015-9757-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-015-9757-7

Keywords

Navigation