Skip to main content
Log in

Constitutive Pluralism of Chemistry: Thought Planning, Curriculum, Epistemological and Didactic Orientations

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Maybe the most difficult aspect of thinking about chemistry arises from the fact that chemistry isn’t an homogeneous subject. As a central science, it draws on a range of philosophical perspectives which in turn can result in different cognitive, learning and teaching styles in chemical education. This idea, apparently non-controversial, needs to be validated by more research. Without assuming this constitutive pluralism, describing it, and determining it, it becomes difficult to think of curricular goals and content. Thus, if we intend to improve the teaching of chemistry it is necessary, first, to assume explicitly this constitutive pluralism, then to map it in order to find the guiding principles: first for the mind (thought process), then for the curriculum and finally for the teaching, in such a way that it is as close as possible to the chemical way of operating and thinking. This is the aim of this paper. It reports the authors’ experiences in drafting structural ideas and planning for the subject “didactic of chemistry” based on the philosophy of chemistry at the University of Porto in Portugal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Anyway the reference curriculum we adopted and the same students related to this experience studied during the first semester of 2010–2011, in a subject called Didática da Química I, has been Salters Advanced Chemistry.

  2. Atoms, molecules, crystals and dissipative structures. The last category includes such entities as stable flames, and periodic biochemical autocatalytic cycles. The latter are at the basis of auto-organization, a concept central to the current scientific paradigm (Earley 2004). More recently the closure of the groups that characterize Chemical entities with causal power (then ontologically fundamental) has been classified in three types named after three distinguished scientists/philosophers: De Broglie, Poincaré and Cauvin (Earley 2011).

  3. Syntese issued a special edition on Philosophy of Chemistry in 1997 and another in 2007.

  4. This corresponds to the most common vision of Science as a dialogue with the world. Other visions include participating in a speech community and empowerment (Anderson 2007). These visions or traditions influence the type of science education research practiced.

  5. Praxeology is the study of the aspects of human action that can be conceived a priori.

  6. Adúriz-Bravo (2001) defines structuring fields as the coherent sets of fundamental ideas on which the academic discipline`s identity is built.

  7. The dimensions of chemistry thought become much more dimensions of Chemical Praxis, which are transcendental structures characterizing the chemical action or “modus operandi” in the various circumstances of chemical applications. Associated with these structures are also styles of chemical thought (apud Bensaude-Vincent 2009a), paradigms (Kuhn), research programs (Lakatos), themata (Holton) in as much as they help to define the particular chemical praxis in each instance.

  8. Bensaude-Vincent (2009b) suggest the term “operational realism” to emphasize that chemists do not claim to represent the real structure of material substances. They rather aim at identifying specific dispositions for operations. They are interested in capacities and believe in the reality of their agencies. Operational realism is akin to Hacking’s “entity realism” but should be extended to abstract concepts such as elements as well as concrete entities.

  9. Both ideographic, based on its history and nomothetic, based on a priori propositions confirmed by the hypothetic deductive method.

  10. Mode 2 production of science is oriented to problem solving, and contrasts with mode 1, explanation oriented (Gibbons et al. 1994).

  11. Hidden curriculum (Chamizo 2009).

  12. The two great theories are the Valence Bond Theory and the Molecular Orbital Theory, with totally different bases, from which also very different concepts are derived (Costa Pereira 1995).

  13. According to the authors, the identity axis of Chemistry would be: origins, territory conquest, a teacher’s science and the dismantling of a territory.

  14. This name was taken from Ian Hacking (2002).

  15. We think that the concepts of thought styles, themata, paradigm, belong to a very high inclusivity and generality level and that they are not operational from a didactic or curricular point of view, their effect not being comparable with the dimensions of thought and praxis. We believe that the latter when described, bear implicitly didactic and curricular orientations and so are more useful as foundations of Chemical Education. This does not invalidate the analysis through other concepts but we believe that our approach has the necessary elements to embrace the Chemistry “modus faciendi” and indirectly thereby its communicating and teaching.

  16. The authors analyzed some subject matter programs of History of Chemistry, Didactics of Chemistry and in service training in chemical university courses of the main universities of Brazil and Portugal.

  17. URL: http://www.nuffieldfoundation.org/nuffield-advanced-physical-science.

  18. The Rhizomatic reasoning implies a logic that continually makes and brakes connections This is certainly not the case of chemistry which may be better described in terms of process rather than substance but follows a definite structure. The fact that chemical structures are ephemeral and that only the relationships and reactions are “real”, need not imply that it is appropriate for the pedagogy to be ‘rhizomatic’. Process structural realism (Earley 2008) is probably the best philosophy for describing the chemical phenomena.

  19. As is the case related in this paper.

References

  • Adúriz-bravo, A. (2001). Integración de la epistemología en la formación del professorado de ciencias. Tese (Doutorado), Universitat Autonoma de Barcelona.

  • Anderson, C. W. (2007). Perspectives in Science Learning. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research in science education. New York: Routledge.

    Google Scholar 

  • Araujo-Neto, W. N. (2009). Formas de uso da noção de representação estrutural no ensino superior de Química. Tese de doutorado, USP.

  • Artigas, M. (2000). The mind of the universe. Philadelphia and London: Templeton Foundation Press.

    Google Scholar 

  • Ausubel, D. P. (2000). The acquisition and retention of knowledge: a cognitive view. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Bachelard, G. (1968). The philosophy of no. A philosophy of the new scientific mind. New York: The Orion Press.

    Google Scholar 

  • Bachelard, G. (1972). Le materialisme rationnel (3rd ed.). Paris: PUF.

    Google Scholar 

  • Bachelard, G. (1973). Le pluralisme coherent de la chimie modern (2nd ed.). Paris: Vrin. (First published 1932).

    Google Scholar 

  • Bachelard, G. (1976). Filosofia do Novo Espirito Cientifico. Portugal: Presença.

    Google Scholar 

  • Bachelard, G. (2009). O Pluralismo Coerente da Química Moderna. Contraponto.

  • Baird, D. (1993). Analytical chemistry and the big scientific instrumentation. Annals of Science, 50, 267–290.

    Article  Google Scholar 

  • Bensaude-Vincent, B. (2005). Chemistry in the French tradition of philosophy of science: Duhem, Meyerson, Metzger and Bachelard. Studies in History and Philosophy of Science, 36(4), 627–848.

    Article  Google Scholar 

  • Bensaude-Vincent, B. (2009a). The chemists’ style of thinking. Berichte zur Wissenschaftsgeschichte, 32(2009), 365–378.

    Article  Google Scholar 

  • Bensaude-Vincent, B. (2009b). Philosophy of chemistry. In A. Brenner & J. Gayon (Eds.), French studies in the philosophy of science: Contemporary research in France (pp. 165–186). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bensaude-Vincent, B., & Stengers, I. (1992). História da Química. Lisboa: Instituto Piaget.

    Google Scholar 

  • Bernal, A., & Daza, E. E. (2010). On the epistemological and ontological status of chemical relations.Hyle, 16(2).

  • Bernstein, B. (1990). Class, codes and control, Vol. IV: The structuring of pedagogic discourse. London: Routledge.

    Book  Google Scholar 

  • Bowden, J., & Marton, F. (2004). The university of learning. London: Routledge Falmer.

    Google Scholar 

  • Cardoso, J. L. V. (2000). Química y epistemología: una relación esquiva. Revista Colombiana de Filosofía de la Ciencia, 1(2/3), 9–26.

    Google Scholar 

  • Chamizo, J. A. (2007). El curriculum oculto en la enseñanza de la química. In M. Izquierdo, M. Crosland, G. Bachelard, C. Jacob, & E. Scerri (Eds.), La Essencia de la Química. México: Universidad Nacional Autónoma de México.

    Google Scholar 

  • Chamizo, J. A. (2009). A Filosofía de la química: I. Sobre el método y los modelos. Educación Química, 20(1), 6–11.

    Google Scholar 

  • Chevallard, Y. (1991). La Transposición Didáctica: del saber sabio al saber enseñado (p. 1991). Buenos Aires: Aique.

    Google Scholar 

  • Costa Pereira, D. (1995). Epistemologia da Química e Estrutura e Lógica dos seus Discursos. Química, SPQ, Lisboa.

  • Costa Pereira, D. (2007). Nova Educação na Nova Ciência para a Nova Sociedade. Fundamentos de uma Pedagogia Científica Contemporânea. Porto: Editora da Universidade do Porto.

    Google Scholar 

  • Debus, A. G. (1991). A Longa Revolução Química. Ciência Hoje, 13, 34.

    Google Scholar 

  • Del Re, G. (1998). Ontological status of molecular structure. Hyle, 4-2, 81–103.

    Google Scholar 

  • Duarte, A. (2002). Aprendizagem, ensino e aconselhamento educacional: uma perspectiva cognitivo-motivacional. Porto: Porto Editora.

    Google Scholar 

  • Duhem, P. (1954). The aim and structure of physical theories (P. Wiener, Trans.). New Jersey: Princeton University Press.

  • Duhem, P. (2002). Mixture and chemical combination, and related essays (translated and edited, with an introduction by P. Needham). Dordrecht: Kluwer.

  • Earley, J. E. (2004). Would introductory chemistry courses work better with a new philosophical basis? Foundations of Chemistry, 6(137–160), 2004.

    Google Scholar 

  • Earley, J. E. (2005). Why there is no salt in the sea. Foundations of Chemistry, 7(1), 85–102.

    Article  Google Scholar 

  • Earley, J. E. (2006a). Some philosophical influences on Ilya Prigogine’s statistical mechanics. Foundations of Chemistry, 8(3), 271–283.

    Article  Google Scholar 

  • Earley, J. E. (2006b). Some philosophical implications of chemical symmetry. In D. Baird, E. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science (Vol. 242, pp. 207–221). Dordrecht: Springer.

  • Earley, J. E. (2008). Ontologically significant aggregation: Process structural realism (PSR). In M. Weber & W. Desmond (Eds.), The handbook of Whiteheadian process thought (Vol. 2, pp. 179–191). Frankfurt: Ontos Verlag.

    Google Scholar 

  • Earley, J. E. (2009). How chemistry shifts horizons: Element, substance, and the essential. Foundations of Chemistry, 11(2), 65–77.

    Article  Google Scholar 

  • Earley, J. E. (2011). Three concepts of chemical closure and their epistemological significance. http://philsci-archive.pitt.edu/5565/.

  • Erduran, S. (2000). Emergence and application of philosophy of chemistry in chemistry education. School Science Review, 81(297), 85–87.

    Google Scholar 

  • Erduran, S. (2001). Philosophy of chemistry: An emerging field with implications for chemistry education. Science & Education, 10, 581–593.

    Article  Google Scholar 

  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9(3), 247–263.

    Article  Google Scholar 

  • Erduran, S., & Scerri, E. (2002). The nature of chemical knowledge and chemical education. In J. Gilbert, O. de Jong, R. Justi, D. Treagust, & J. van Driel (Eds.), Chemical education: Towards research-based practice (pp. 7–27). Dordrecht: Kluwer.

    Google Scholar 

  • Furió, C., & Furió, C. (2000). Dificultades conceptuales y epistemológicas en el aprendizaje de los procesos químicos. Educación Química, 11(3), 301–308.

    Google Scholar 

  • Gibbons, M., Trow, M., Scott, P., Schwartzman, S., Nowotwny, H., & Limoges, C. (1994). The new production of knowledge—the dynamics of science and research in contemporary societies. London, Thousand Oaks, CA: Sage.

    Google Scholar 

  • Gilbert, J. K. (2009). Visualization: A metacognitive skill. in science and science education. In J. K. Gilbert (Ed.), Visualization in science education (pp. 9–27). Holanda: Springer.

    Google Scholar 

  • Gilbert, J. K., de Jong, O., Justi, R., Van Driel, J., & Treagust, D. (Eds.). (2003). Chemical education: Towards research based practice (pp. 47–68). Dordrecht: Kluwer.

    Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (Eds.). (2009). Multiple representations in chemical education. Dordrecht: Springer.

    Google Scholar 

  • Gois, J. (2007). Desenvolvimento de um ambiente virtual para estudo sobre Representação estrutural em Química. Dissertação de Mestrado, Universidade de São Paulo.

  • Goodwin, W. M. (2008). Structural formulas and explanation in organic chemistry. Foundations of Chemistry, 10(2), 117–127.

    Article  Google Scholar 

  • Grossman, P. L., Wilson, S. L., & Shulman, L. S. (2005). Profesores de sustancia: el conocimiento de la materia para la enseñanza. Revista de currículum y formación del profesorado, 9, 2.

    Google Scholar 

  • Habermas, I. (1994), Técnica e Ciência como “Ideologia”, Lisboa, Edições 70.

  • Hacking, I. (2002). Style for historians and philosophers, historical ontology. Cambridge: Harvard University Press.

    Google Scholar 

  • Harré, R. (2005). Chemical kinds and essences revisited. Foundations of Chemistry, 7(7–30), 2005.

    Google Scholar 

  • Harré, R., & Llored, J. (2010). Mereologies as the grammars of chemical discourses. Foundations of of Chemistry, 13(1), 63–76.

    Article  Google Scholar 

  • Hartman, H. J. (2001). Teaching metacognitively. In H. J. Hartman (Ed.), Metacognition in learning and instruction: Theory, research and practice (pp. 149–172). Boston: Kluwer.

    Google Scholar 

  • Izquierdo, M., & Adúriz-Bravo, A. (2003). Epistemological foundations of school science. Science & Education, 12(1), 27–43.

    Article  Google Scholar 

  • Izquierdo, M., & Adúriz-Bravo, A. (2005). La enseñanza de los componentes prácticos y axiológicos de los conceptos químicos. In M. T. Cabré & C. Bach (Eds.), Coneixement, llenguatge i discurs especialitztat (pp. 325–345). Barcelona: Institut Universitari de Lingüística Aplicada (UPF)/Documenta Universitària.

    Google Scholar 

  • Justi, R. (2006). La ensenanza de ciencias basada em la elaboracion de modelos. Ensenansa de las ciências, 24(2), 173–184.

    Google Scholar 

  • Kovac, J. (2001). Gifts and commodities in chemistry. Hyle, 7(2), 141–153.

    Google Scholar 

  • Kovac, J. (2002). Theoretical and practical reasoning in chemistry. Foundations of Chemistry, 4, 163–171.

    Article  Google Scholar 

  • Kozma, R., & Russel, J. (2007). Representational competence’s profile of pre-service chemistry teachers in chemical problem solving in science and science education. In J. K. Gilbert (Ed.), Visualization in science education (pp. 9–27). The Netherlands: Springer.

    Google Scholar 

  • Lamza, L. (2010). How much history can chemistry take? Hyle, 16(2), 104–120.

    Google Scholar 

  • Laurillard, D. (2002). Rethinking university teaching: A conversational framework for the effective use of learning technologies (2nd ed.). London: RoutledgeFalmer.

    Book  Google Scholar 

  • Le Moigne, J. L. (1995). Les Épistémologies Constructivistes, Paris: Que-sais-je? PUF.

  • Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–880). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lefèvre, W. (2011). Viewing chemistry through its ways of classifying. Foundations of Chemistry, 13(3).

  • Lobo, S. F. (2006). A licenciatura em química da UFBA: epistemologia, currículo e prática docente. Tese de doutorado. UFBA.

  • Lombardi, O., & Labarca, M. (2005). The ontological autonomy of the chemical world. Foundations of Chemistry, 7, 125–148.

    Article  Google Scholar 

  • Matthews, M. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.

    Google Scholar 

  • McComas, W. F. (2004). The nature of science in science education: Rationales and strategies. The Netherlands: Kluwe.

    Google Scholar 

  • Mether T. R. (2008). Cassirrer and Peirce. Reality as symbolic semeosis: Parallels in the philosophies of Ernst Cassirer and Charles Peirce. Paper presented at the Tennessee Philosophical Association Conference, Nashville.

  • Needham, P. (1996). Aristotelian chemistry: A prelude to Duhemian Metaphysics. Studies in History and Philosophy of Science, 26, 251–269.

    Article  Google Scholar 

  • Needham, P. (2002). Pierre Duhem, mixture and chemical combination, and related essays (translated and edited, with an introduction by P. Needham). Dordrecht: Kluwer.

  • Needham, P. (2006). Aristotle’s theory of chemical reaction and chemical substances. In D. Baird, E. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science (pp. 43–67). Springer.

  • Newton, I. (1704). Optiks.

  • Nicole, G., Henning, H., & Peter, R. S. (2010). Heuristic thinking makes a chemist smart. Chemical Society Reviews, 39, 1503–1512.

    Article  Google Scholar 

  • Nordmann, A. (2006). From metaphysics to metachemistry. In D. Baird, E. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science (pp. 347–362). Dordrecht: Springer.

  • Peirce, C. S. (2005). Semiótica (3rd ed.). São Paulo: Perspectiva.

    Google Scholar 

  • Polanyi, M. (1966). The tacit dimension (first published Doubleday & Co, 1966. Reprinted Peter Smith, Gloucester, MA, 1983. Chapter 1: “Tacit Knowing”).

  • Pombo, O. (2010). Operativity and representative of the sign in Leibniz. In O. Pombo & A. Gerner (Eds.), Studies in diagrammatology and diagram praxis. London: Colleges publications.

    Google Scholar 

  • Prigogine, I. (1996). O Fim das Certezas—Tempo, Caos e Leis da Natureza. São Paulo: Editora UNESP.

    Google Scholar 

  • Rothbart, D. (1999). On the relationship between instrument and specimen in chemical research. Foundations of Chemistry, 1(3), 255–268.

    Article  Google Scholar 

  • Scerri, E. (1999). On the nature of chemistry. Educación Quimica, 10(2), 74–78.

    Google Scholar 

  • Scerri, E. (2004). Philosophical confusion in chemical education research. Journal of Chemical Education, 80(5), 468–474.

    Article  Google Scholar 

  • Scerri, E. (2006). Normative and descriptive philosophy of science and the role of chemistry. In D. Baird, E. R. Scerri, & L. McIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science (Vol. 242, pp. 119–128).

  • Scerri, E. (2007). Reduction and emergence in chemistry—two recent approaches. In Proceedings of the philosophy of science association.

  • Schnetzler, R., & Santos, W. L. P. (1996). Função social: O que significa ensino de química para formar o cidadão? Ensino de química e cidadania. Química Nova na Escola. São Paulo, 4, 28–34.

    Google Scholar 

  • Schummer, J. (1997a). Towards a philosophy of chemistry. Journal for General Philosophy of Science, 28, 307–335.

    Article  Google Scholar 

  • Schummer, J. (1997b). Scientometric studies on chemistry I: The exponential growth of chemical substances, 1800–1995. Scientometrics, 39, 107–123.

    Article  Google Scholar 

  • Schummer, J. (1997c). Scientometric studies on chemistry II: Aims and methods of producing new chemical substances. Scientometrics, 39, 125–140.

    Article  Google Scholar 

  • Schummer, J. (1998). The chemical core of chemistry I: A conceptual approach. Hyle, 4-1, 129–162.

    Google Scholar 

  • Schummer, J. (1999). Coping with the growth of chemical knowledge: Challenges for chemistry documentation, education, and working chemists. Educacion Química, 10(2), 92–101.

    Google Scholar 

  • Schummer, J. (2006). The philosophy of chemistry: From infancy towards maturity. In D. Baird, E. Scerri, & L. MacIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science (Vol. 242, pp. 19–39). Dordrecht: Springer.

  • Schwab, J. J. (1966). The teaching of science as enquiry. In J. Schwab & P. Brandwein (Eds.), The teaching of science (pp. 1–103). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Seibert, C. (2001). Charley Peirce’s head start in chemistry. Foundations of Chemistry, 3(3), 201–206.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Shulman, L. S. (2005). Conocimiento y enseñanza: fundamentos de la nueva reforma. Revista de currículum y formación del profesorado, 9(2), 1–30

    Google Scholar 

  • Sjöström, J. (2006). Beyond classical chemistry: Subfields and metafields of the molecular sciences. Chemistry International, 28(September–October), 9–15.

    Google Scholar 

  • Soukup, R. W. (2005). Historical aspects of the chemical bond: Chemical relationality versus physical objectivity. Monatshefte für Chemie, 136, 803–813.

    Article  Google Scholar 

  • Spector, T. I. (2003). The aesthetics of molecular representation: From the empirical to the constitutive. Foundations of Chemistry, 5(3), 215–236.

    Article  Google Scholar 

  • Stein, R. L. (2004). Towards a process philosophy of chemistry. Hyle, 10-1, 5–22.

    Google Scholar 

  • Taber, K. S., & Watts, M. (2000). Learners` explanations for chemical phenomena. Chemistry Education: Research and Practice in Europe, 1(3), 329–353.

    Article  Google Scholar 

  • Tala, S. (2009). Unified view of science and technology for education: Technoscience and technoscience education. Science & Education, 18, 275–298.

    Article  Google Scholar 

  • Tanner, D., & Tanner, L. (1995). Curriculum development: Theory into practice. New Jersey: Englewood Cliffs (Vallance, E., 1986).

  • Toulmim, S. (2003). The uses of argument. Cambridge: University Press (1958, 2nd edition 2003).

  • Van Aalsvoor, T. J. (2004). Logical positivism as a tool to analyze the problem of chemistry’s lack of relevance in secondary school chemical education. International Journal of Science Education, 26, 1151–1168.

    Article  Google Scholar 

  • Van Brakel, J. (1997). Chemistry as the science of the transformation of substances. Synthese, 111(3), 253–282.

    Article  Google Scholar 

  • Van Brakel, J. (1999). On the neglect of the philosophy of chemistry. Foundations of Chemistry, 1, 111–174.

    Article  Google Scholar 

  • Van Brakel, J. (2000). Philosophy of chemistry. Between the manifest and the scientific image. Leuven: Leuven University Press.

    Google Scholar 

  • Van Brakel, J. (2006a). Kant`s legacy for the philosophy of chemistry. In D. Baird, et al. (Eds.), Philosophy of chemistry (pp. 69–91). The Netherlands: Springer.

    Chapter  Google Scholar 

  • Van Brakel, J. (2006b). The philosophy of chemistry: From infancy towards maturity. In D. Baird, E. Scerri, & L. MacIntyre (Eds.), Philosophy of chemistry: Synthesis of a new discipline. Boston Studies in the Philosophy of Science series. Dordrecht: Kluwer.

  • Vihalemm, R. (2007). Philosophy of chemistry and the image of science. Foundations of Science, 12(3), 223–234.

    Article  Google Scholar 

  • Vihalemm, R. (2011). The autonomy of chemistry: Old and new problems. Foundations of Chemistry, 13(2), 97–107.

    Article  Google Scholar 

  • Whitehead, A. N. (1978). In D. R. Griffin, & D. W. Sherburne (Eds.), Process and reality. New York: Macmillan.

  • Ziman, J. (2000). Real science—what is, and what it means. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antonio Pinto Ribeiro.

Additional information

This article is largely based on the PhD thesis of one of the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, M.A.P., Pereira, D.C. Constitutive Pluralism of Chemistry: Thought Planning, Curriculum, Epistemological and Didactic Orientations. Sci & Educ 22, 1809–1837 (2013). https://doi.org/10.1007/s11191-011-9434-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9434-4

Keywords

Navigation