Skip to main content
Log in

The History of the Cooling Law: When the Search for Simplicity can be an Obstacle

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

This paper presents an historical overview of the research on the cooling law, from Newton until the beginning of 20th century, and provides some suggestions for the use of this history as a resource for teaching. This history begins with a description and an interpretation of Newton’s earlier work in 1701 and an overview of studies confirming or confuting Newton’s law during the 18th century. Subsequently, it presents the early studies on cooling due to radiant heat, the fundamental work of Dulong and Petit published in 1817, and a brief overview of the research conducted after 1850 on the laws of thermal radiation and of natural and forced convection. It is shown that many scientists persisted in maintaining Newton’s law, despite numerous evidence to the contrary, by attributing the found discrepancies to empirical errors or to other disturbance factors. Many scientists considered this law as a fundamental principle rather than a conjecture to be tested by means of experiments, while others were searching for a different but general and unique cooling law. The faith in the simplicity of natural laws and the spontaneous idea of proportionality between cause and effect seem to have strongly influenced Newton and many later scientists. A discussion of epistemological, methodological and pedagogical implications is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. See: http://www.nap.edu/catalog/4962.html, Chap. 6a, p. 107.

  2. See: Ruffner J. A. (1963); Molnar G. W. (1969); Grigull U. (1984); Winterton R. H. S. (1999); Simms D. L. (2004); Cheng K. C. (2009).

  3. The Scotsman Joseph Black (1728–1799) was the first to clearly understand, around 1760, the distinction between heat and temperature, but his ideas only diffused slowly after 1770 and his Lectures were published after his death in 1803. In his Lectures on the Elements of Chemistry (1803), he wrote that in a situation of thermal equilibrium usually scientists imagined that “there is an equal quantity of heat in every equal measure of space, however filled up with different bodies. The reason they give for this opinion is that to whichever of those bodies the thermometer be applied, it points to the same degree. But this is taking a very hasty view of the subject. It is confounding the quantity of heat in different bodies with its general strength or intensity, though it is plain that these are two different things, and should always be distinguished … The quantities of heat which different kinds of matter must receive, … to raise their temperature by an equal number of degrees, are not in proportion to the quantity of matter in each, but in proportions widely different from this, and for which no general principle or reason can yet be assigned… different bodies, although they be … of the same weight, when they are reduced to the same temperature or degree of heat, … may contain very different quantities of the matter of heat”.

  4. See Jones (1991).

  5. To be more precise, Newton did not consider that phase changes of pure substances take place at constant temperature, but rather over a small temperature interval. For example, he wrote: “Water begins to boil with a degree of heat of 33 parts, and by boiling scarcely acquires any greater degree than that of 34½ (Incipit aqua ebullire calore partium 33 & calorem partium plusquam 34½ ebulliendo vix concipit)”; and “96. Least degree of heat that melts lead; lead, by growing hot, is melted with the heat of 96 or 97 parts, and cooling it hardens with 95 parts.”.

  6. Ruffner (1963) had already remarked this aspect: “he [Newton] intends, ultimately, to define a scale of heat by means of his cooling law” (p. 149). Previously, E. Mach (1896) sustained that Newton’s argument was circular (Mach 1896, p. 60).

  7. The works of Richmann were considered very authoritative, so that some authors made reference to the cooling law (1–2) as Richmann’s law.

  8. Unless different indications are given, all quotations that were in Latin, in French or in German in the original were translated in English by the author of the present paper.

  9. Mackenzie (1989) develops an interesting presentation of the Martine’s life and works, but he writes erroneously (p. 1829) that Martine argued that the cooling law coincides with “that obeyed by a heavy body descending perpendicularly in a medium…” whilst it is matter of a body ascending vertically. Moreover, he specifies that this law “according to Newton’s Principia is a hyperbolic curve” represented by the Fig. 2. On the contrary, this law is not represented by a hyperbola, because it is an exponential function, and in the Martine’s paper Fig. 2 did not represent this law, but the cases in which this law is not valid.

  10. Manuscripts Copy of Journal Book of the Royal Society of London, 15 November 1716, quoted by Simms (2010), pp. 73–74.

  11. The quotations in the text make references to the book Rumford (1873) The Complete Works of Count Rumford, Vol. 2, which contains also a Historical Review Of The Various Experiments Of The Author On The Subject Of Heat, at pp. 188–240.

  12. The ideas of frigorific rays and of reflection and focusing of cold were previously sustained by G. Della Porta (1589) and confirmed by the Accademia del Cimento of Florence, in Italy (Saggi di Naturali Esperienze fatte nell’Accademia del Cimento (1667), p. 176, English translation in: Essayes of Natural Experiments made in the Academia del Cimento, trans. by R. Waller, London, 1684, p. 103). By contrast, Marc-Auguste Pictet, Pierre Prevost and other sustainers of material nature of heat interpreted these phenomena as a result of a peculiar arrangement of caloric transmission. An interesting controversy took place between Rumford and Prévost about the existence of cold radiation and the nature of heat. In fact, Rumford considered the existence of frigorific radiation as a strong argument against the caloric theory (see also Chang 2002).

  13. «Dans un milieu de température constant, un corps s’échauffe ou se refroidit, de sorte que les différences de sa chaleur à celle du milieu sont en progression géométrique, tandis que les tems de l’échauffement ou du refroidissement sont en progression arithmétique» (Prévost 1809, pp. 46–47).

  14. “Quelque cause trouble-t-elle la loi au-delà de certaines limites ?”.

  15. He wrote in French (Delaroche 1812, pp. 215 et 220) : «La quantité de chaleur qu'un corps chaud cède dans un temps donné par voie de rayonnement à un corps froid situé à distance, croît, toutes choses égales d'ailleurs, suivant une progression plus rapide que l'excès de la température du premier sur celle du second. Cette proposition n'est pas d'accord avec les opinions reçues. M. Leslie a même fait des expériences dont le résultat semble lui être directement contraire. Aussi ai-je cru devoir répéter plusieurs fois les expériences qui établissent sa justesse, et les varier de plusieurs manières… Je crois qu'en général la quantité de chaleur reçue est d'autant plus éloignée d'être proportionnelle à l'excès de la température du corps chaud sur celle du corps froid, que la température du premier devient plus élevée ; mais je n’ai pas multiplié assez mes observations, pour établir avec quelque précision, la loi suivant laquelle se fait l’accroissement de cette quantité de chaleur.».

  16. «lorsqu'un corps chaud A agit sur un autre corps B à distance et à travers l'air, la quantité de calorique rayonnant que celui-ci reçoit à chaque instant infiniment petit, n'est pas simplement proportionnelle à l'excès de la température de A sur la sienne, mais croit suivant une loi plus rapide, qui, dans les expériences citées, est exprimée par les deux premières puissances impaires de la température» (p. 24).

  17. «M. Dalton, en considérant la même question sous un point de vue beaucoup plus élevé, a essayé d'établir des lois générales applicables à la mesure de toutes les températures. Ces lois, il faut en convenir, forment un ensemble imposant par leur régularité et leur simplicité. Malheureusement cet habile physicien s'est trop empressé de généraliser des aperçus fort ingénieux, il est vrai, mais qui ne reposaient que sur des évaluations incertaines : aussi n'est-il presqu'aucune de ses assertions qui ne se trouve contredite par les résultats des recherches que nous allons faire connaître», p. 15.

  18. «c'est sans doute à l'extrême complication de cette loi qu'il faut attribuer le peu de succès des tentatives faites jusqu'à ce jour pour la découvrir. On ne pouvait évidemment y parvenir qu'en étudiant à part chacune des causes qui contribuent à l'effet total», p.367.

  19. In the original article in German, Boltzmann wrote: “In meinem Aufsatze über eine von Bartoli entdeckte Beziehung der strahlenden Wärme zum zweiten Hauptsatze habe ich gezeigt, dass sich zwischen den beiden Funktionen ψ und f aus dem zweiten Hauptsatze die Beziehung ergibt f = t ∫ψdt/t 2 , deren Differential lautet: tdffdt = ψdt, wenn also, wie aus der elektromagnetischen Lichttheorie folgt, f = 1/3ψ gesetzt wird, so erhält man: t·dψ/3 = 4ψdt/3 und durch Integration ψ = ct 4 , ein Gesetz, welches bekanntlich schon vor längerer Zeit von Stefan empirisch aufgestellt und in guter Übereinstimmung mit den Beobachtungen gefunden wurde”.

References

  • Arnold, M., & Millar, R. (1996). Learning the scientific story: A case study in the teaching and learning of elementary thermodynamics. Science Education, 80(3), 249–281.

    Article  Google Scholar 

  • Bacon, F. (1620). Novum Organum, sive indicia vera de interpretatione naturae. London, Oxford: Clarendon, reprint 1813. English translation: J. Devey (Ed), New York: P.F. Collier and Son, 1901.

  • Benseghir, A., & Closset, J. L. (1996). The electrostatics-electrokinetics transition: Historical and educational difficulties. International Journal of Science Education, 18(1), 179–191.

    Article  Google Scholar 

  • Besson, U. (2010a). Calculating and understanding: Formal models and causal explanations in science, common reasoning and physics teaching. Science & Education, 19(3), 225–257.

    Article  Google Scholar 

  • Besson, U. (2010b). Cooling and warming laws: An exact analytical solution. European Journal of Physics, 31(5), 1107–1121.

    Article  Google Scholar 

  • Besson, U., De Ambrosis, A., & Mascheretti, P. (2010). Studying the physical basis of global warming: Thermal effects of the interaction between radiation and matter and greenhouse effect. European Journal of Physics, 31, 375–388.

    Article  Google Scholar 

  • Biot, M. (1816). Sur la loi de Newton relative à la communication de la chaleur. Bulletin de la Société Philomatique, 21–24.

  • Boltzmann, L. (1884). Ableitung des Stefan’schen Gesetzes betreffend die Abhängigkeit der Wärmestrahlung von der Temperatur aus der elektromagnetischen Lichttheorie (Deduction of the Stefan’s law concerning the dependence of the radiant heat on the temperature from the electromagnetic light theory). Annalen der Physik und Chemie, 22, 291–294. (Now: Vol. 258, Issue 6, Date: 1884, Pages: 291–294).

  • Brace, D. B. (1901). The laws of radiation and absorption, Memoirs by Prévost, Stewart, Kirchhoff, and Kirchhoff and Bunsen. New York: American Book Company.

    Google Scholar 

  • Carey, S. (1988). Reorganisation of knowledge in the course of acquisition. In S. Strauss (Ed.), Ontogeny, phylogeny and historical development (pp. 1–27). Ablex: Norwood.

    Google Scholar 

  • Chang, H. (2002). Rumford and the reflection of radiant cold: Historical reflections and metaphysical reflexes. Physics in Perspective, 4, 127–169.

    Article  Google Scholar 

  • Cheng, K. C. (2009). Some observations on the origins of Newton’s law of cooling and its influences on thermofluid science. Applied Mechanics Reviews, 62(6), 060803.

    Article  Google Scholar 

  • Chevallard, Y. (1991). La transposition didactique. Grenoble, FR: La Pensée Sauvage.

    Google Scholar 

  • Conant, J. B. (1957). Harvard case histories in experimental science. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cornell, E. S. (1936). Early studies in radiant heat. Annals of Science, 1(2), 217–225.

    Article  Google Scholar 

  • Cotignola, M. I., Bordogna, C., Punte, G., & Cappannini, O. M. (2002). Difficulties in learning thermodynamic concepts: Are they linked to the historical development of this field? Science & Education, 11, 279–291.

    Article  Google Scholar 

  • Crepeau, J. (2007). Josef Stefan: His life and legacy in the thermal sciences. Experimental Thermal and Fluid Science, 31(7), 795–803.

    Article  Google Scholar 

  • Dalton, J. (1808). A new system of chemical philosophy, Part I (chap. 1). London: R. Bickerstaff.

  • de Berg, K. C. (2008). The concepts of heat and temperature: The problem of determining the content for the construction of an historical case study which is sensitive to nature of science issues and teaching-learning issues. Science & Education, 17, 75–114.

    Article  Google Scholar 

  • Delaroche, F. (1812). Observations sur le calorique rayonnant, Journal de Physique, XXV, 201–228. Abridged English version in (1813) Observations on Radiant Heat, Annals of Philosophy, London, 2, 100–102.

    Google Scholar 

  • Desaguliers, J. T. (1744). A course of experimental philosophy. London, Vol. 2.

  • Dulong, P. & Petit, A. (1817). Recherches sur la Mesure des Températures et sur les Lois de la communication de la chaleur. Annales de Chimie et de Physique (Paris: Clochard), VII, 113–154, 225–264, 337–367.

  • Erickson, G., & Tiberghien, A. (1985). Heat and temperature. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 52–84). Philadelphia: Open University Press.

    Google Scholar 

  • Ericsson, J. (1872). Radiation at different temperatures. Nature, 6, 106–108 (June 1872). The temperature of the surface of the sun. Nature, 5, 505–507 (April 1872).

    Google Scholar 

  • Erxleben, I. C. P. (1777). Legem Vulgarem, secundum quam calor corporum certo temporis intervallo crescere vel descrescere dicitur, ad examen revocat. Novi Commentarii Societatis Regiae Scientiarum Gottingensis, Gottingae, VIII, 74–95.

  • Grigull, U. (1984). Newton’s temperature scale and the law of cooling. Wärme-Stoffübertragung, Heat and transfer, 18, 195–199.

    Article  Google Scholar 

  • Herschel, W. (1800). Philosophical Transactions of the Royal Society of London, 90, 293–326, 437–538.

    Google Scholar 

  • Holton, G. (2003). What historians of science and science educators can do for one another. Science & Education, 12, 603–616.

    Article  Google Scholar 

  • Hutton, J. (1794). A dissertation upon the philosophy of light, heat and fire. Edinburgh & London: Cadell and Davis.

    Google Scholar 

  • Jones, P. (Ed.) (1991). Sir Isaac Newton: A catalogue of manuscripts and papers. Cambridge: Chadwyck-Healey.

  • Lambert, J. H. (1755). Tentamen de vi caloris, qua corpora dilatat, eiusdem dimensione. Acta Helvetica, II, 172–242.

    Google Scholar 

  • Langmuir, I. (1912). Convection and conduction of heat in gases. Physical Review, 34(6), 401–423.

    Google Scholar 

  • Leslie, J. (1804). An experimental inquiry into the nature and propagation of heat. London: J. Mawman.

    Google Scholar 

  • Lorenz, L. (1881). Über das Leistungsvermögen der Metalle für Warme und Elektrizität [Over the efficiency of the metals for heat and electricity]. Annalen der Physik, 249(7), 422–447, 249(8), 582–606.

  • Mach, E. (1896). The principles of the theory of heat. Dordrecht: Brian McGuiness.

    Google Scholar 

  • Mackenzie, R. C. (1989). George Martine, M.D., F.R.S. (1700–1741) An early thermal analyst? Journal of Thermal Analysis, 35, 1823–1836.

    Article  Google Scholar 

  • Martine, G. (1738–1740). Essays and observations on the construction and graduation of thermometers, and on the heating and cooling of bodies. Edinburgh: Alexander Donaldson, 3rd ed., 1780 (the book collects essays first published in 1738–1740), pp. 51–87.

  • Matthews, M. R. (1994). Science teaching, the role of history and philosophy of science. New York, London: Routledge.

    Google Scholar 

  • McAdams, W. (1933). Heat transmission. New York: McGraw-Hill, 3rd ed., 1954, Chap. 7.

  • McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 122–130.

    Article  Google Scholar 

  • Molnar, G. W. (1969). Newton’s thermometer: A model for testing Newton’s law of cooling. Physiologist, 12(1), 9–19.

    Google Scholar 

  • Nersessian, N. J. (1995). Opening the black box: Cognitive science and the history of science. Osiris, 10(1), 194–211.

    Article  Google Scholar 

  • Newton, I. (1701). Scala graduum caloris, Calorum descriptiones & signa (Scale of the degrees of heat). Philosophical Transactions, 22(270), 824–829. English translation in: Newton, I. (1809). Philosophical Transactions Royal Society of London, Abridged, 4, 572–575.

    Google Scholar 

  • O’Sullivan, C. T. (1990). Newton law of cooling—a critical assessment. American Journal of Physics, 58(10), 956–960.

    Article  Google Scholar 

  • Oberbeck, A. (1879). Uber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen [On the Thermal conduction of the liquids with consideration of the currents due to temperature differences]. Annalen der Physik und Chemie, 243(6), 271–292.

    Article  Google Scholar 

  • Piaget, J., & Garcia, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.

    Google Scholar 

  • Prévost, P. (1791). Mémoires sur l’équilibre du feu. Journal de Physique, 38, 314–323.

    Google Scholar 

  • Prévost, P. (1809). Du Calorique rayonnant. Genève: Paschond.

    Google Scholar 

  • Richmann, G. W. (1747). Inquisitio in legem, secundum quam calor fluidi in vase contenti, certo temporis intervallo, in temperie aëris constanter eadem decrescit vel crescit. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae, 174–197.

  • Ruffner, J. A. (1963). Reinterpretation of the genesis of Newton’s “Law of Cooling”. Archive for History of Exact Sciences, 2(2), 138–152.

    Article  Google Scholar 

  • Seroglou, F., & Koumaras, P. (2001). The contribution of the history of physics in physics education: A review. Science & Education, 10(1), 153–172.

    Article  Google Scholar 

  • Shayer, M., & Wylam, H. (1981). The development of the concepts of heat and temperature in 10–13 years-olds. Journal of Research in Science Teaching, 5, 419–434.

    Article  Google Scholar 

  • Simms, D. L. (2004). Newton’s contribution to the science of heat. Annals of Science, 61(1), 33–77.

    Article  Google Scholar 

  • Stavy, R., & Berkovitz, B. (1980). Cognitive conflict as a basis for teaching quantitative aspects of the concept of temperature. Science Education, 64(5), 679–692.

    Article  Google Scholar 

  • Stefan, J. (1879). Über die Beziehung zwischen der Wärmestrahlung und der Temperatur (On the relationship between radiant heat and temperature). Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften, 79, 391–428.

    Google Scholar 

  • Stinner, A., McMillan, B., Metz, D., Jilek, J., & Klassen, S. (2003). The renewal of case studies in science education. Science & Education, 12, 617–643.

    Article  Google Scholar 

  • Teixeira, E. S., Greca, I. M. & Freire, O. (2009). The history and philosophy of science in physics teaching: A research synthesis of didactic interventions. Science & Education. doi:10.1007/s11191-009-9217-3.

  • Thomas, L. C. (1980). Fundamental of heat transfer. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Thomson, B. (Rumford). (1804). An enquiry concerning the nature of heat and the mode of its communication. Philosophical Transactions of the Royal Society, 94, 77–182.

    Google Scholar 

  • Thomson, B. (Rumford). (1873). The complete works of Count Rumford. Boston: American Academy of Arts and Science, Vol. 2.

  • Tyndall, J. (1865). On radiation: The “REDE” lecture, delivered in the senate house, before the University of Cambridge, England, on Tuesday, May 16, 1865. New York: D. Appleton & Co.

    Google Scholar 

  • Viennot, L. (1979). Le raisonnement spontané en dynamique élémentaire. Paris: Hermann.

    Google Scholar 

  • Wang, H. A., & Marsh, D. D. (2002). Science instruction with a humanistic twist. Science & Education, 11, 169–189.

    Article  Google Scholar 

  • Winterton, R. H. S. (1999). Newton’s law of cooling. Contemporary Physics, 40(3), 205–212.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Besson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besson, U. The History of the Cooling Law: When the Search for Simplicity can be an Obstacle. Sci & Educ 21, 1085–1110 (2012). https://doi.org/10.1007/s11191-010-9324-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9324-1

Keywords

Navigation