Skip to main content

Advertisement

Log in

The Use of History and Philosophy of Science as a Core for a Socioconstructivist Teaching Approach of the Concept of Energy in Primary Education

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The present study should be thought as a socioconstructivist teaching approach (a teaching model) for the concept of energy in primary education. It contains important and crucial aspects of the History and Philosophy of Natural Sciences, introduces the concept of energy using the macroscopic framework of thermodynamics, takes into consideration learners’ alternative ideas or frameworks relating to energy, takes advantage of the causal and the unifying characters of energy, which have been founded on the historiographical analysis of this concept, uses energy chains as visual representations for the deep understanding of it, uses visual grammar of Kress and van Leeuwen to design energy chains and introduces a teaching methodology for this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See for example Sexl (1981); Trumper (1990).

  2. See for example the work of: Arons (1999); Erlichson (1977); Penchina (1978); Sherwood (1983); Leff and Mallinckrodt (1993) and Mallinckrodt and Leff (1992).

  3. Watts (1983); Trumper (1990); Solomon (1983b).

  4. Solomon (1983a); Gilbert and Pope (1982); Watts (1983); Bliss and Ogborn (1985); Nicholls and Ogborn (1993); Ault et al. (1988).

  5. Kesidou and Duit (1993); Viennot (1979); Watts and Gilbert (1983); Watts (1983); Trumper (1993).

  6. Ault et al. (1988); Black and Solomon (1983); Watts (1983); Trumper (1997); Duit (1981).

  7. Watts (1983); Trumper (1993); Watts (1983); Black and Solomon (1983); Trumper (1993); Nicholls and Ogborn (1993); Ault et al. (1988).

  8. See for example Duit (1981); Kesidou and Duit (1993); Trumper (1990); Driver and Warrington (1985).

  9. Lemeignan and Weil-Barais (1993); Tiberghien and Megalakaki (1995).

  10. Kuhn mentions as pioneers: Mohr, Helmholtz, Liebig, Mayer, Colding and Seguin.

  11. He refers to: Joule, Colding, Verdet, Bohn, Rankine, and Akin.

  12. History of Conservation of Energy, History of Mechanical Theory of Heat, Dynamical Theory of Heat, Thermodynamics, Energetics, Force,etc.

  13. (a) conservation of vis––viva: (Descartes, Huygens, Leibniz, I. Bernoulli, D. Bernoulli, D' Alembert, Fresnel, L. Carnot) (b) dynamical theory of heat: (Bacon, Locke, Rumford, Davy, Young) (c) correlation of forces: (Rumford, Haldat, Morosi, Seguin, Placidus) (d) mechanical equivalent: (S. Carnot, Clayperon, Holtzmann, Mayer, Colding, Joule) and e) generalization of the principle: (Helmholtz, Clausius, Rankine, W. Thomson)”(www. F. Bevilacqua-ppp.unipvit, p. 99).

  14. (a) Mayer, Joule, Golding and Helmholtz formulated the concept of energy conservation (b) Carnot, Seguin, Holtzmann and Hirn recorded their independent conviction that heat and work are quantitatively interchangeable (c) Mohr, Grove, Faraday and Liebig described the world of phenomena as manifesting a single ‘force' which could appear in electrical, thermal, dynamical and many other forms.

  15. See for example of the works: Mathewson (1999); Mathewson (2005); Ametller and Pinto (2002); Lynch (1990); Patrick et al. (2005).

  16. Kozma (2003); Kozma and Russell (1997); Kress and van Leeuwen (1996); Pinto and Ametller (2002).

  17. Buckley (2000); Patrick et al. (2005).

References

  • Ametller, J., & Pinto, R. (2002). Students’ reading of innovative images of energy at secondary school level. International Journal of Science Education, 24(3), 285–312.

    Article  Google Scholar 

  • Arons, A. B. (1990). A guide to introductory physics teaching. New York: John Wiley.

    Google Scholar 

  • Arons, Α. Β. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67(12), 1063–1066.

    Article  Google Scholar 

  • Ault, C., Novak, J., & Gowin, D. (1988). Constructing Vee maps for clinical interviews on energy concept. Science Education, 72(4), 515–545.

    Article  Google Scholar 

  • Bevilacqua, F. Conservation and innovation: Helmholtz’s struggle with energy problems (1845–1894) and the birth of theoretical physics at available: www.F.Bevilacqua-ppp.Unipvit.

  • Bevilacqua, F. (1993). Helmholtz’s Ueber die Erhaltung der Kraft––The emergence of a theoretical physicist. In D. Caham (Ed.), Helmholtz von Helmholtz and the Foudations of Nineteenth Century Science (pp. 291–333). Berkeley: University of California Press.

    Google Scholar 

  • Black, P., & Solomon, J. (1983). Life world and science world: Pupils’ ideas about energy. In G. Marx (Ed.), Entropy in the school: Proceeding of the 6th Danube seminar on physics education (Vol. I, pp. 43–55). Budapest: Roland Eotvos Physical Society.

  • Bliss, J., & Ogborn, J. (1985). Children’s choices of uses of energy. European Journal of Science Education, 7(2), 195–203.

    Article  Google Scholar 

  • Bory, C. (1974). La Τhermodynamique, PUF.

  • Brown, D. T. (1965). Resource letter EEC-1 on the evolution of energy concepts from Galileo to Helmholtz. American Journal of Physics, 33(10), 759–765.

    Article  Google Scholar 

  • Brown, I. H. (1977). Perception, theory and commitment: The new philosophy of science. Chicago: Chicago University Press.

    Google Scholar 

  • Buckley, B. C. (2000). Interactive multimedia and model––based learning in biology. International Journal of Science Education, 22, 895–935.

    Article  Google Scholar 

  • Cavena, K. L. (1993). Robert Mayer and the conservation of energy. Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  • Cheng, P. C. H. (1999). Unlocking conceptual learning in mathematics and science with effective representation systems. Computers and Education, 33, 109–130.

    Article  Google Scholar 

  • Colin, P., Chauvet, F., & Viennot, L. (2002). Reading images in optics: Students’ difficulties and teachers’ views. International Journal of Science Education, 24(3), 313–332.

    Article  Google Scholar 

  • Darrigol, O. (2001). God, waterwheels and molecules: Saint-Venant’s anticipation of energy conservation. Historical Studes in the Physical and Biological Sciences, 31(part 2), 285–353.

    Article  Google Scholar 

  • Domenech, J. L., Gil-Perez, D., Gras-Marti, A., Guissola, J., Martinez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43–64.

    Article  Google Scholar 

  • Dondis, D. A. (1973). A primer of visual literacy. Mass: Cambridge.

    Google Scholar 

  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science. London: Routledge.

    Google Scholar 

  • Driver, R., & Warrington, L. (1985). Students’ use of the principle of energy conservation in problem situations. Physics Education, 20, 171–176.

    Article  Google Scholar 

  • Duit, R. (1981). Understanding energy as a conserved quantity-remarks on the article by R U Sexl. European Journal of Science Education, 3(3), 291–301.

    Article  Google Scholar 

  • Duit, R. (1985). In Search of an energy concept. In R. Millar & R. Driver (Eds.), Energy matters (pp. 67–101). Leeds: University of Leeds.

    Google Scholar 

  • Elkana, Y. (1974). The discovery of the conservation of energy. Great Britain: Hutchinson Educational LTD.

    Google Scholar 

  • Erlichson, H. (1977). Work and kinetic energy for an automobile coming to a stop. American Journal of Physics, 45, 769.

    Article  Google Scholar 

  • Faraday, M. (1844). Experimental researches in electricity, II, 101–104. The original “Seventeenth Series” of which this is a part was read to the Royal Society in March, 1840.

  • Fermi, E. (1956). Thermodynamics. Mineola: Dover Publications.

    Google Scholar 

  • Feynman, P. R. (1998). Six easy pieces. Califfornia: Institute of Technology.

    Google Scholar 

  • Garcia, R. (1987). Sociology of science and sociogenesis of knowledge. In B. Inhelder, D. de Caprona, & A. Cornu-Wells (Eds.), Piaget today (pp. 127–140). Hillsdale USA: Lawrence Erlbaum Associates, Publishers.

    Google Scholar 

  • Gilbert, C., & Pope, M. (1982). Schoolchildren discussing energy. Surrey: Internal Report IED, University of Surrey.

    Google Scholar 

  • Golding, H., & Osborne, J. (1994). Students’ difficulties with energy and related concepts. Physics Education, 29, 26–31.

    Article  Google Scholar 

  • Grove, R. W. (1843). On the correlation of physical forces: Being the substance of a course of lectures delivered in the London institution in the year 1843. London (1846).

  • Harris, W. F. (1981). Heat in undergraduate education, or isn’t in time we abandoned the theory of caloric? International Journal of Mechanical Engineering Education, 9(4), 317–325.

    Google Scholar 

  • Hicks, N. (1983). Energy is the capacity to do work- or is it? The Physics Teacher, 21, 529–530.

    Article  Google Scholar 

  • Kaper, W., & Goedhart, M. (2002). Forms of energy, an intermediary language on the road to thermodynamics? Part II. International Journal of Science Education, 24(2), 119–137.

    Article  Google Scholar 

  • Karplus, R. (1981). Educational aspects of the structure of physics. American Journal of Physics, 49(3), 238–241.

    Article  Google Scholar 

  • Kesidou, S., & Duit, R. (1993). Students’ conceptions of second law of thermodynamics––an interpretive study. Journal of Research in Science Teaching, 30(1), 85–106.

    Article  Google Scholar 

  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13, 205–226.

    Article  Google Scholar 

  • Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representation of chemical phenomena. Journal of Research in Science Teaching, 34, 949–968.

    Article  Google Scholar 

  • Kress, G., & van Leeuwen, T. (1996). Reading images: The grammar of the visual design. London and New York: Routledge.

    Google Scholar 

  • Kuhn, S. T. (1959). Energy conservation as an example of simultaneous discovery. In M. Clagett (Ed.), Critical problems in the history of science (pp. 321–356). Madison: University of Wisconsin Press.

    Google Scholar 

  • Kuhn, T. S. (1971). The structure of scientific revolution. Chicago: University of Chicago Press.

    Google Scholar 

  • Leff, H. S., & Mallinckrodt, A. J. (1993). Stopping objects with zero external work: Mechanics meets thermodyanamics. American Journal of Physics, 61(2), 121–127.

    Article  Google Scholar 

  • Lehrman, R. (1973). Energy is not the ability to do work. The Physics Teacher, 11, 15–18.

    Article  Google Scholar 

  • Lemeignan, G., & Weil-Barais, A. (1993). Construire des Concepts en Physique L’ Enseignement de La Mécanique. Paris: Paris Hachette.

    Google Scholar 

  • Lindsay, R. (1971). The concept of energy and its early historical development. Found Physics, 1(4), 383–393.

    Article  Google Scholar 

  • Lynch, M. (1990). The external retina: Selection and mathematication in the visual documentation of objects in the life sciences. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice. Cambridge: MIT Press.

    Google Scholar 

  • Mallinckrodt, A. J., & Leff, H. S. (1992). All at work. American Journal of Physics, 60(40), 356–365.

    Article  Google Scholar 

  • Mathewson, J. (1999). Visual––spatial thinking: an aspect of science overlooked by educators. Science Education, 88, 33–54.

    Article  Google Scholar 

  • Mathewson, J. (2005). The visual core of science: Definition and applications to education. International Journal of Science Education, 27(5), 529–548.

    Article  Google Scholar 

  • Mayer, J. R. (1842). Bemerkungen umber die Krafte der unbelebten Natur. Annalen der Chemie und Pharmacie. In J. R. Mayer (Ed.), Die Mechanik der Warme: Samtliche Schriften (Vol. 42, pp. 233–240). HP Munzenmayer, Stadtarchiv Heilbronn, Stadtarchiv Heilbronn, Heilbronn.

  • Nicholls, G., & Ogborn, J. (1993). Dimensions of children’s conceptions of energy. International Journal of Science Education, 15(1), 73–81.

    Article  Google Scholar 

  • Patrick, M., Carter, G., & Wiebe, E. (2005). Visual representations of dna replication: Middle grades students’ perceptions and interpretations. Journal of Science Education and Technology, 14(30), 353–365.

    Article  Google Scholar 

  • Penchina, C. M. (1978). Pseudowork–energy principle. American Journal of Physics, 46, 295–296.

    Article  Google Scholar 

  • Pfundt, H., & Duit, R. (1994). Students alternative frameworks and science education, 4th edn/4Auflge.

  • Pinto, R. (2002). Introduction to the Science Teacher Training in an Information Society (STTIS) project. International Journal of Science Education, 24(3), 227–234.

    Article  Google Scholar 

  • Pinto, R., & Ametller, J. (2002). Students’ difficulties in reading images. Comparing results from four national research groups. International Journal of Science Education, 24(3), 333–341.

    Article  Google Scholar 

  • Prigogine, I., & Stengers, I. (1979). La nouvelle alliance. Gallimard: Métamorphose de La Science.

    Google Scholar 

  • Resnick, R., Halliday, D., & Krane, K. S. (1992). Physics (4th ed., Vol. 1). New York: Wiley.

    Google Scholar 

  • Rogers, E. (1965). Physics for the inquiring mind. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Sexl, R. U. (1981). Some observations concerning the teaching of energy concept. European Journal of Science Education, 3(3), 285–289.

    Article  Google Scholar 

  • Shadmi, Υ. (1984). An outline of a mechanics course based on the israeli junior high school physics curriculum. In A. Mayer & P. Tamir (Eds.), Science teaching in Israel-origins, development and achievements. Jerusalem: Hebrew University.

  • Sherwood, B. A. (1983). Pseudowork and real work. American Journal of Physics, 51, 597–602.

    Article  Google Scholar 

  • Solomon, J. (1983a). Messy, contradictory and obstinately persistent: A study of Children’s out–of- school Ideas about energy. School Science Review December, 1983, 225–229.

    Google Scholar 

  • Solomon, J. (1983b). Learning about energy: How pupils think in two domains. European Journal of Science Education, 5, 49–59.

    Article  Google Scholar 

  • Sommerville, M. (1834). On the connexion of the physical sciences (London 1834), unpaginated “Preface”.

  • Stylianidou, F. (2002). Analysis of science textbook picture about energy and pupils’ reading of them. International Journal of Science Education, 24(3), 27–283.

    Article  Google Scholar 

  • Thomson, P., & Davenport, P. (1982). The dictionary of visual language. Penguin: Harmondworth.

    Google Scholar 

  • Tiberghien, A. (1983). Critical review on the research aimed at elucidating the sense that the notions of temperature and heat have for students aged 10 to 16 years. International summer workshop: Research on physics education, Lalonde les Maures, France.

  • Tiberghien, A., & Megalakaki, O. (1995). Characterization of a modelling activity for a first qualitative approach to the concept of energy. European Journal of Psychology of Education, 4, 369–383.

    Article  Google Scholar 

  • Trumper, R. (1990). Being constructive: An alternative approach to the teaching of the energy concept, part one. International Journal of Science Education, 12, 343–354.

    Article  Google Scholar 

  • Trumper, R. (1993). Children’s energy concepts: A cross–age study. International Journal of Science Education, 15(2), 139–148.

    Article  Google Scholar 

  • Trumper, R. (1997). Applying conceptual conflict strategies in the learning of the energy concept. Research in Science & Techonological Education, 15(1), 5–18.

    Article  Google Scholar 

  • Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education, 1(2), 205–221.

    Article  Google Scholar 

  • Wareen, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295–297.

    Article  Google Scholar 

  • Watt, D. M. (1983). Some alternative views of energy. Physics Education, 18, 213–217.

    Article  Google Scholar 

  • Watts, M., & Gilbert, J. (1983). Enigmas in school science: Students’ conceptions for scientifically associated words. Research in Science & Techological Education, 1(2), 161–171.

    Article  Google Scholar 

  • Young, D. H. (1992). Physics (8th ed.). Cambridge: Addison-Wesley Publishing Company Inc.

    Google Scholar 

  • Zemansky, W. M. (1968). Heat and thermodynamics (5th ed.). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Zemansky, W. M. (1969). The use of the word ‘Heat’ in the elementary and in the intermediate in physics. In S. Sikjaers (Ed.), Seminar on the teaching of physics in schools. Gyldental.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Kokkotas.

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizaki, A., Kokkotas, P. The Use of History and Philosophy of Science as a Core for a Socioconstructivist Teaching Approach of the Concept of Energy in Primary Education. Sci & Educ 22, 1141–1165 (2013). https://doi.org/10.1007/s11191-009-9213-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-009-9213-7

Keywords

Navigation