Skip to main content

Bioinformatics Insights on Plant Vacuolar Proton Pyrophosphatase: A Proton Pump Involved in Salt Tolerance

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume III

Abstract

Vacuolar proton-translocating inorganic pyrophosphatases (VPPases) are active proton transporters. They establish proton gradient across the endomembrane by the hydrolysis of inorganic pyrophosphate (PPi). VPPase activates secondary vacuolar active transport systems and provides tolerance to abiotic stress. VPPase is a simple proton pump with 13–16 transmembrane helices compactly folded in a rosette manner in two concentric walls. The core of VPPase contains an imidodiphosphate (IDP) and three highly conserved motifs CS1, CS2, and CS3. The core regulates the translocation of H+ ions from cytosol to vacuolar lumen. The pumping of H+ into vacuole builds electrochemical gradient which changes its pH and energizes various antiporters. This results in influx of Na+, K+, NO3, and Cl from cytosol to vacuole and reduces the toxicity in cytosol. This chapter provides an overview on bioinformatics approaches used to understand the 3D structure, motifs, function, and working model of VPPases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjaneyulu E, Reddy PS, Sunita MS, Kishor PBK, Meriga B (2014) Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J Plant Physiol 171(10):789–798

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Baltscheffsky M, Nadanaciva S, Schultz A (1998) A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum. Biochim Biophys Acta 1364:301–306

    Article  CAS  PubMed  Google Scholar 

  • Baltscheffsky M, Schultz A, Baltscheffsky H (1999) HC-PPases: a tightly membranebound family. FEBS Lett 457:527–533

    Article  CAS  PubMed  Google Scholar 

  • Baykov AA, Bakuleva NP, Rea PA (1993) Steady-state kinetics of substrate hydrolysis by vacuolar H+-pyrophosphatase: a simple three-state model. Eur J Biochem 217:755–762

    Article  CAS  PubMed  Google Scholar 

  • Baykov AA, Cooperman BS, Goldman A, Lahti R (1999) Prog Mol Subcell Biol 23:127–150

    Article  CAS  PubMed  Google Scholar 

  • Belogurov GA, Lahti R (2002) A lysine substitute for K+-A460K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43(4):347–354

    Article  CAS  PubMed  Google Scholar 

  • Britten CJ, Turner JC, Rea PA (1989) Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Lett 256:200–206

    Article  CAS  Google Scholar 

  • Da Silva C, Zamperin G, Ferrarini A, Minio A, Dal Molin A, Venturini L, Buson G, Tononi P, Avanzato C, Zago E, Boido E (2013) The high polyphenol content of grapevine cultivar tannat berries is conferred primarily by genes that are not shared with the reference genome. Plant Cell 25(12):4777–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darley CP, Skiera LA, Northrop FD, Sanders D, Davies JM (1998) Tonoplast inorganic pyrophosphatase in Vicia faba guard cells. Planta 206:272–2777

    Article  CAS  Google Scholar 

  • Dong QL, Liu DD, An XH, Hu DG, Yao YX, Hao YJ (2011) MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato. J Plant Physiol 168(17):2124–2133

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi A, Monfared SRA, Kashkooli AB (2015) Pyrophosphate-energized vacuolar membrane proton pump [Aeluropus littoralis] agronomy and plant breeding, Tehran University, Karaj, Alborz 31587-1167, Iran

    Google Scholar 

  • Fan W (2011) Overexpression of the Na+/H+ antiporter gene from sweet potato. Cassava and sweetpotato biotechnology, direct submission to NCBI with accession no. AFQ00710

    Google Scholar 

  • Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55(397):585–594

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought-and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98(20):11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gordon-Weeks R, Parmar S, Davies TGE, Leigh RA (1999) Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Biochem J 337:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Luna FM, Hernández-Domínguez EE, Valencia-Turcotte LG, Rodríguez-Sotres R (2018) Pyrophosphate and pyrophosphatases in plants, their involvement in stress responses and their possible relationship to secondary metabolism. Plant Sci 267:11. https://doi.org/10.1016/j.plantsci.2017.10.016. Epub 2017 Nov 8.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda M, Tanabe E, Rahman MH, Kadowaki H, Moritani C et al (1999) A vacuolar inorganic HC-pyrophosphatase in Acetabularia acetabulum: partial purification, characterization and molecular cloning. J Exp Bot 50:139–140

    CAS  Google Scholar 

  • Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: roles in plant nutrition and signalling. FEBS Lett 584:1982–1988

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD (1984) K+-Na+ exchange at cellular membranes, intracellular compartmentation of cations, and salt tolerance. Sanity tolerance in plant. Strategies for crop improvement. Wiley-Interscience Publication, New York, pp 33–76

    Google Scholar 

  • Johansson I, Larsson C, Ek B, Kjellbom P (1996) The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca+ and apoplastic water potential. Plant Cell 8:1181–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim EJ, Rea PA (1994a) Isolation and characterization of cDNAs encoding the vacuolar HC-pyrophosphatase of Beta vulgaris. Plant Physiol 106:375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim EJ, Rea PA (1994b) Isolation and characterization of cDNAs encoding the vacuolar H+-pyrophosphatase of Beta vulgaris. Plant Physiol 106(1):375–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5:678–698

    Article  CAS  Google Scholar 

  • Kranewitter W, Gogarten P, Pfeiffer W (2002) Cloning and sequencing of the vacuolar proton-pumping PPase from Chenopodium rubrum. Direct submission to NCBI with accession no. AAM97920

    Google Scholar 

  • Lerchl J, K¨onig S, Zrenner R, Sonnewald U (1995) Molecular cloning, characterization and expression analysis of isoforms encoding tonoplast-bound protontranslocating inorganic pyrophosphatase in tobacco. Plant Mol Biol 29:833–840

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Baldwin CM, Hu Q, Liu HB, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33(2):272–289

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Peng PH, Ko CY, Markhart AH, Lin TY (2012) Characterization of a novel Y2 K-type dehydrin VrDhn1 from Vigna radiata. Plant Cell Physiol 53:930–942

    Article  CAS  PubMed  Google Scholar 

  • Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Li HY (2011) Cloning of a vacuolar H+-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53(9):731–742

    CAS  PubMed  Google Scholar 

  • Lv S, Jiang P, Chen X, Fan P, Wang X, Li Y (2012) Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiol Biochem 51:47–52

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M, Yoshida S (1989) Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem 264:20068–20073

    CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: An overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Maruyama C, Tanaka Y, Mitsuda NT, Takeyasu K, Yoshida M, Sato MH (1998) Structural studies of the vacuolar H+-pyrophosphatase: sequence analysis and identification of the residues modified by fluorescent cyclohexylcarbodiimide and maleimide. Plant Cell Physiol 39:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Li S, Guo J, Guo Q, Mao P, Tian X (2017) Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea. Sci Rep 7(1):17779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura H, Nakanishi Y, Hirono M, Maeshima M (2004) Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis. J Biol Chem 279(33):35106–35112

    Article  CAS  PubMed  Google Scholar 

  • Mohammed SA, Nishio S, Takahashi H, Shiratake K, Ikeda H, Kanahama K, Kanayama Y (2012) Role of vacuolar H+-inorganic pyrophosphatase in tomato fruit development. J Exp Bot 63(15):5613–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi Y, Maeshima M (1998) Molecular cloning of vacuolar H+-pyrophosphatase and its developmental expression in growing hypocotyl of mung bean. Plant Physiol 116:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi Y, Matsuda N, Aizawa K, Kashiyama T, Yamamoto K et al (1999) Molecular cloning of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina. Biochem Biophys Acta 1418:245–250

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi M, Yoshida K, Mimura T (2018) Analyzing the vacuolar membrane (tonoplast) proteome. In: Plant membrane proteomics. Humana Press, New York, pp 107–116

    Chapter  Google Scholar 

  • Porcel R, Gomez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15:417–423

    Article  CAS  PubMed  Google Scholar 

  • Rea PA, Poole RJ (1985) Proton-translocating inorganic pyrophosphatase in red beet (Beta vulgaris L.) tonoplast vesicles. Plant Physiol 77:46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea PP, Poole RJ (1986) Chromatographic resolution of H+-translocating pyrophosphatase from H+-translocating ATPase of higher plant tonoplast. Plant Physiol 81:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rea PA, Poole RJ (1993) Vacuolar H+ −translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180

    Article  CAS  Google Scholar 

  • Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D (1992) Vacuolar H+-translocating pyrophosphatase: a new category of ion translocase. Trends Biochem Sci 17(9):348–352

    Article  CAS  PubMed  Google Scholar 

  • Rehman S, Harris PJC, Ashraf M (2005) Stress environments and their impact on crop production. Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York, pp 3–18

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakakibara Y, Kobayashi H, Kasamo K (1996) Isolation and characterization of cDNAs encoding vacuolar H+-pyrophosphates isoforms from rice (Oryza sativa L.). Plant Mol Biol 31:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarafian V, Kim Y, Poole RJ, Rea PA (1992) Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci 89(5):1775–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling RK, Tester M, Marschner P, Plett DC, Roy SJ (2017) AVP1: one protein, many roles. Trends Plant Sci 22(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schocke L, Schink B (1998) Membrane-bound proton-translocating pyrophosphatase of syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur J Biochem 256:589–594

    Article  CAS  PubMed  Google Scholar 

  • Suneetha G (2015) Studies on in vitro, in planta and in silico analysis of vacuolar proton pyrophosphatase from Sorghum bicolor (SbV-PPase) and its overexpression in Cajanus cajan (unpublished doctoral thesis). GITAM University, Visakhapatnam, Andhra Pradesh, India

    Google Scholar 

  • Suneetha G, Neelapu NRR, Surekha CH (2016) Plant vacuolar proton pyrophosphatases (VPPases): structure, function and mode of action. Int J Recent Sci Res Res 7(6):12148–12152

    Google Scholar 

  • Swanson SJ, Jones RL (1996) Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell 8:2211–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu A, Nakanishi Y, Yamauchi T, Maeshima M (1997) Analysis of the substrate binding site and carboxyl terminal region of vacuolar H+-pyrophosphatase of mung bean with peptide antibodies. J Biochem 122:883–889

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Chiba K, Maeda M, Maeshima M (1993) Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun 190:1110–1114

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  CAS  PubMed  Google Scholar 

  • Venter M, Groenewald JH, Botha FC (2006) Sequence analysis and transcriptional profiling of two vacuolar H+-pyrophosphatase isoforms in Vitis vinifera. J Plant Res 119(5):469–478

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Guo YJ, Cao H, Kuai BK (2011) Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell Tissue Organ Cult 105(3):309–316

    Article  CAS  Google Scholar 

  • Yao M, Zeng Y, Liu L, Huang Y, Zhanq F (2012) Overexpression of the halophyte Kalidium Foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39(8):7989–7996

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR (1999) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78:159–174

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1986) The physiology of salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust J Plant Physiol 13:75–91

    Google Scholar 

  • Young ND, Debellé F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK, Benedito VA, Mayer KF, Gouzy J, Schoof H, Van de Peer Y (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen RG, Baykov AA, Bakuleva NP, Rea PA (1994) Aminomethylenediphosphonate: a potent type-specific inhibitor of both plant and phototrophic bacterial H+-pyrophosphatases. Plant Physiol 104:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H+-pyrophosphatase by N, N′-dicyclohexylcarbodiimide. J Biol Chem 272:22340–22348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Gandhi Institute of Technology and Management (GITAM) deemed-to-be-university, for providing necessary facilities to carry out the research work and for extending constant support in writing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Challa Surekha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neelapu, N.R.R., Kusuma, S.S., Dutta, T., Surekha, C. (2019). Bioinformatics Insights on Plant Vacuolar Proton Pyrophosphatase: A Proton Pump Involved in Salt Tolerance. In: Hakeem, K., Shaik, N., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume III. Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_11

Download citation

Publish with us

Policies and ethics