Skip to main content
Log in

Symmetry Operators of the Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation with a Quadratic Operator

  • Published:
Russian Physics Journal Aims and scope

A class of nonlinear symmetry operators has been constructed for the many-dimensional nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation quadratic in independent variables and derivatives. The construction of each symmetry operator includes an interwining operator for the auxiliary linear equations and additional nonlinear algebraic conditions. Symmetry operators for the one-dimensional equation with a constant influence function have been constructed in explicit form and used to obtain a countable set of exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  2. P. J. Olver, Application of Lie Groups to Differential Equations, Springer, N. Y. (1986).

    Book  Google Scholar 

  3. G. W. Bluman, A. F. Cheviakov, and S. Anco, Applications of Symmetry Methods to Partial Differential Equations, Springer, N. Y. (2010).

    Book  MATH  Google Scholar 

  4. R. A. Fisher, Annu. Eugenics, 7, 255–369 (1937).

    Google Scholar 

  5. A. N. Kolmogorov, N. G. Petrovskii, and N. S. Piskunov, Bull. MGU, Matem. Mekh., 1, No. 6, 1–16 (1937).

    Google Scholar 

  6. E. A. Levchenko, A. V. Shapovalov, and A. Yu. Trifonov, J. Math. An. Appl., 395, 716–726 (2012).

    Article  MATH  Google Scholar 

  7. M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre, Phys. Rev. Lett., 91, 158104–158108 (2003).

    Article  ADS  Google Scholar 

  8. J. A. R. Da Cunha, A. L. A. Penna, M. H. Vainstein, et al., Phys. Lett. A, 373, 661–667 (2009).

    Article  ADS  MATH  Google Scholar 

  9. V. M. Kenkre, Physica A, 342, 242–248 (2004).

    Article  ADS  Google Scholar 

  10. H. Berestycki et al., Nonlinearity, 22, 2813–2844 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow, (1973).

    Google Scholar 

  12. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets: Geometry and Quantization [in Russian], Nauka, Moscow (1991).

    Google Scholar 

  13. A. Yu. Trifonov and A. V. Shapovalov, Russ. Phys. J., 52, No. 9, 899–911 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. G. Budanov, Teor. Mat. Fiz., 61, No. 3, 347–363 (1984).

    Article  MathSciNet  Google Scholar 

  15. H. Bateman and A. Erdelyi, Higher Transcendental Functions: Bessel Functions, Parabolic Cylinder Functions, and Orthogonal Polynomials [Russian translation], Nauka, Moscow (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Levchenko.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 86–95, December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levchenko, E.A., Trifonov, A.Y. & Shapovalov, A.V. Symmetry Operators of the Nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov Equation with a Quadratic Operator. Russ Phys J 56, 1415–1426 (2014). https://doi.org/10.1007/s11182-014-0194-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-014-0194-x

Keywords

Navigation