Skip to main content
Log in

Invariant solutions of a nonlinear wave equation with a small dissipation obtained via approximate symmetries

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, it is shown how a combination of approximate symmetries of a nonlinear wave equation with small dissipations and singularity analysis provides exact analytic solutions. We perform the analysis using the Lie symmetry algebra of this equation and identify the conjugacy classes of the one-dimensional subalgebras of this Lie algebra. We show that the subalgebra classification of the integro-differential form of the nonlinear wave equation is much larger than the one obtained from the original wave equation. A systematic use of the symmetry reduction method allows us to find new invariant solutions of this wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ames, W.F., Lohner, R.J., Adams, E.: Group properties of \(u_t=[f(u)u_x]_x\). Int. J. Non Linear Mech. 16, 439–447 (1981)

    Article  Google Scholar 

  2. Bluman, G., Cheviakov, A.F.: Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. J. Math. Anal. Appl. 333(1), 93111 (2007)

    Article  MathSciNet  Google Scholar 

  3. Fushchich, W.I., Shtelen, W.M.: On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter. J. Phys. A Math. Gen. 22(18), L887 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bluman, G., Kumei, S.: Symmetries and Differential Equations, Applied Mathematical Sciences, vol. 81. Springer, New York (1989)

    Book  Google Scholar 

  5. Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107. Springer, New York (1986)

    Book  Google Scholar 

  6. Sattinger, D., Weaver, O.: Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics, Applied Mathematical Sciences, vol. 61. Springer, New York (1986)

    MATH  Google Scholar 

  7. Rozdestvenskii, B., Janenko, N.: Systems of Quasilinear Equations and Their Applications to Gas Dynamics, Translations of Mathematical Monographs, vol. 55. AMS, Providence (1983)

    Book  Google Scholar 

  8. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Approximate symmetries of equations with a small parameter (Russian) Akad. Nauk USSR Inst. Prikl. Mat. Preprint 1987, no. 150

  9. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: (2-AOS-M) Approximate symmetries (Russian) Mat. Sb. (N.S.) 136 (178) (1988), 435–450, 590; translation in Math. USSR-Sb. 64 (1989), no. 2, 427–441

  10. Ruggieri, M., Speciale, M.P.: Lie group analysis of a wave equation with a small nonlinear dissipation. Ricerche Mat. 66, 27–34 (2017)

    Article  MathSciNet  Google Scholar 

  11. Patera, J., Winternitz, P.: Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 18, 1449–1455 (1977)

    Article  MathSciNet  Google Scholar 

  12. Winternitz, P.: Lie groups and solutions of nonlinear partial differential equations. In: Ibort, L.A., Rodriguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories, pp. 429–495. Kluwer, Dordrech (1993)

    Chapter  Google Scholar 

Download references

Acknowledgements

AMG’s work was supported by a research grant from NSERC of Canada. AJH wishes to thank the Mathematical Physics Laboratory of the Centre de Recherches Mathématiques, Université de Montréal, for the opportunity to participate in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Grundland.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: subalgebra classification for the integro-differential case

Appendix: subalgebra classification for the integro-differential case

The Lie symmetry subalgebra for the integro-differential case given in Sect. 3 can be written as the semi-direct sum

(135)

The algebra \(\{X_5,X_6\}\) is Abelian and its subalgebra classification is given by

$$\begin{aligned} \{0\},\qquad \{X_5\},\qquad \{X_6\},\qquad \{X_5+aX_6\}(a\ne 0),\qquad \{X_5,X_6\} \end{aligned}$$
(136)

Using the method of splitting and non-splitting subalgebras as given in [12], we classify the one-dimensional subalgebras of the semi-direct sum (135). A basis element for each one-dimensional invariant subalgebra of \({\mathcal {L}}\) is transformed by the Baker-Campbell-Hausdorff formula in order to determine which other invariant subalgebras it is conjugate to. For instance, if we consider the subalgebra \(X=\{X_1\}\) and take an arbitrary element of the group generated by \({\mathcal {L}}\), \(e^Y\), where Y is the generator

$$\begin{aligned} Y=\alpha X_1+\beta X_2+\gamma X_3+\delta X_4+\zeta X_5+\eta X_6 \end{aligned}$$
(137)

we obtain

$$\begin{aligned} e^YX_1e^{-Y}=X_1-\zeta X_1+\dfrac{\zeta ^2}{2\!}-\cdots = e^{-\zeta }X_1 \end{aligned}$$
(138)

so the subalgebra \(\{X_1\}\) is conjugate only to itself. Applying this procedure to the other one-dimensional invariant subalgebras of \({\mathcal {L}}\), we obtain the following list of 63 one-dimensional subalgebras.

The following list constitutes the classification of the one-dimensional subalgebras of the symmetry Lie algebra for both cases of Eq. (120) (where the symbol \(X_6\) represents the symmetry generator (123) or the symmetry generator (130) respectively) into conjugacy classes.

$$\begin{aligned} \begin{aligned}&{\mathcal {L}}_1=\{X_1\}, \quad {\mathcal {L}}_2=\{X_2\},\quad {\mathcal {L}}_3=\{X_1+\varepsilon X_2\}, \quad {\mathcal {L}}_4=\{X_3\},\quad {\mathcal {L}}_5=\{X_3+\varepsilon X_1\}, \\&{\mathcal {L}}_6=\{X_3+\varepsilon X_2\},\quad {\mathcal {L}}_7=\{X_3+\varepsilon X_1+aX_2\},\quad {\mathcal {L}}_{8}=\{X_4\}, {\mathcal {L}}_{9}=\{X_4+\varepsilon X_1\}, \\&{\mathcal {L}}_{10}=\{X_4+\varepsilon X_2\},\quad {\mathcal {L}}_{11}=\{X_4+\varepsilon X_1+aX_2\},\quad {\mathcal {L}}_{12}=\{X_4+\varepsilon X_3\}, \\&{\mathcal {L}}_{13}=\{X_4+\varepsilon X_3+aX_1\},\quad {\mathcal {L}}_{14}=\{X_4+\varepsilon X_3+aX_2\},\quad \\&\quad {\mathcal {L}}_{15}=\{X_4+\varepsilon X_3+aX_1+bX_2\}, \\&{\mathcal {L}}_{16}=\{X_5\},\quad {\mathcal {L}}_{17}=\{X_5+\varepsilon X_1\}, \quad {\mathcal {L}}_{18}=\{X_5+\varepsilon X_2\},\quad {\mathcal {L}}_{19}=\{X_5+\varepsilon X_1+aX_2\}, \\&{\mathcal {L}}_{20}=\{X_5+\varepsilon X_3\},\quad {\mathcal {L}}_{21}=\{X_5+\varepsilon X_3+aX_1\},\quad {\mathcal {L}}_{22}=\{X_5+\varepsilon X_3+aX_2\}, \\&{\mathcal {L}}_{23}=\{X_5+\varepsilon X_3+aX_1+bX_2\},\quad {\mathcal {L}}_{24}=\{X_5+\varepsilon X_4\},\quad {\mathcal {L}}_{25}=\{X_5+\varepsilon X_4+aX_1\}, \\&{\mathcal {L}}_{26}=\{X_5+\varepsilon X_4+aX_2\},\quad {\mathcal {L}}_{27}=\{X_5+\varepsilon X_4+aX_1+bX_2\},\quad \\&\quad {\mathcal {L}}_{28}=\{X_5+\varepsilon X_4+aX_3\}, \\&{\mathcal {L}}_{29}=\{X_5+\varepsilon X_4+aX_3+bX_1\},\quad {\mathcal {L}}_{30}=\{X_5+\varepsilon X_4+aX_3+bX_2\}, \\&{\mathcal {L}}_{31}=\{X_5+\varepsilon X_4+aX_3+bX_2+cX_1\},\quad {\mathcal {L}}_{32}=\{X_6\}, {\mathcal {L}}_{33}=\{X_6+\varepsilon X_1\}, \\&{\mathcal {L}}_{34}=\{X_6+\varepsilon X_2\},\quad {\mathcal {L}}_{35}=\{X_6+\varepsilon X_1+aX_2\},\quad {\mathcal {L}}_{36}=\{X_6+\varepsilon X_3\}, \\&{\mathcal {L}}_{37}=\{X_6+\varepsilon X_3+aX_1\},\quad {\mathcal {L}}_{38}=\{X_6+\varepsilon X_3+aX_2\},\quad \\&\quad {\mathcal {L}}_{39}=\{X_6+\varepsilon X_3+aX_1+bX_2\}, \\&{\mathcal {L}}_{40}=\{X_6+\varepsilon X_4\},\quad {\mathcal {L}}_{41}=\{X_6+\varepsilon X_4+aX_1\},\quad {\mathcal {L}}_{42}=\{X_6+\varepsilon X_4+aX_2\}, \\&{\mathcal {L}}_{43}=\{X_6+\varepsilon X_4+aX_1+bX_2\},\quad {\mathcal {L}}_{44}=\{X_6+\varepsilon X_4+aX_3\}, \\&{\mathcal {L}}_{45}=\{X_6+\varepsilon X_4+aX_3+bX_1\},\quad {\mathcal {L}}_{46}=\{X_6+\varepsilon X_4+aX_3+bX_2\}, \\&{\mathcal {L}}_{47}=\{X_6+\varepsilon X_4+aX_3+bX_1+cX_2\},\quad {\mathcal {L}}_{48}=\{X_5+aX_6\},\quad \\&\quad {\mathcal {L}}_{49}=\{X_5+aX_6+\varepsilon X_1\}, \\&{\mathcal {L}}_{50}=\{X_5+aX_6+\varepsilon X_2\},\quad {\mathcal {L}}_{51}=\{X_5+aX_6+\varepsilon X_1+bX_2\},\quad \\&\quad {\mathcal {L}}_{52}=\{X_5+aX_6+\varepsilon X_3\}, \\&{\mathcal {L}}_{53}=\{X_5+aX_6+\varepsilon X_3+bX_1\},\quad {\mathcal {L}}_{54}=\{X_5+aX_6+\varepsilon X_3+bX_2\}, \\&{\mathcal {L}}_{55}=\{X_5+aX_6+\varepsilon X_3+bX_1+cX_2\},\quad {\mathcal {L}}_{56}=\{X_5+aX_6+\varepsilon X_4\}, \\&{\mathcal {L}}_{57}=\{X_5+aX_6+\varepsilon X_4+bX_1\},\quad {\mathcal {L}}_{58}=\{X_5+aX_6+\varepsilon X_4+bX_2\}, \\&{\mathcal {L}}_{59}=\{X_5+aX_6+\varepsilon X_4+bX_1+cX_2\},\quad {\mathcal {L}}_{60}=\{X_5+aX_6+\varepsilon X_4+bX_3\},\quad \\&{\mathcal {L}}_{61}=\{X_5+aX_6+\varepsilon X_4+bX_3+cX_1\},\quad {\mathcal {L}}_{62}=\{X_5+aX_6+\varepsilon X_4+bX_3+cX_2\}, \\&{\mathcal {L}}_{63}=\{X_5+aX_6+\varepsilon X_4+bX_3+cX_1+dX_2\}, \end{aligned} \end{aligned}$$

The subalgebra structure of the integro-differential case is far more extensive than that of the three cases analyzed in Sect. 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grundland, A.M., Hariton, A.J. Invariant solutions of a nonlinear wave equation with a small dissipation obtained via approximate symmetries. Ricerche mat 69, 509–532 (2020). https://doi.org/10.1007/s11587-020-00486-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00486-9

Keywords

Mathematics Subject Classification

Navigation