Skip to main content

Advertisement

Log in

The theory of motion of quantum electromechanical plasmoid nanobots in a condensed-state medium

  • Published:
Russian Physics Journal Aims and scope

The theory of motion of quantum electromechanical plasmoid nanobots in a condensed-state medium is presented. The mechanism of a nanobot functioning is shown to be related to the quantum exchange between a nanoparticle and the quantum-field condensed-state system realized by a tangled (e e +)-plasmoid pair. The operation of an (e e +)-plasmoid is interpreted as a quantum analog of a fuel cell based on the nanoelectromechanical systems (NEMS) of a nanobot. It is the electrical and magnetic fields of force of the (e e +)-plasmoid which control the quantum motion of the NEMS-based nanobot. This ensures its response to an external action and allows the respective physical tools to be designed in order to control self-motion of the NEMS-based nanobot in a material medium. Two available mechanisms of the relaxational self-motion of a nanobot in the condensed matter are shown: conversion of the internal quantum-mechanical energy of the nanobot into the electrical energy of a quantum (e e +)-plasmoid and conversion of the electrical energy of a quantum (e e +)-plasmoid into the mechanical energy of the nanobot’s motion in a material. These mechanisms prescribe a discrete manipulation of the NEMS-based nanobot in a material medium. The time, displacement, forces and power involved in the NEMS-based nanobot transportation are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hess, Science, 312, 779 (2006).

    Article  Google Scholar 

  2. K. Lund, A.J. Manzo, N. Dabby, et al., 465, 206 (2010).

  3. T. Desai and S. Bhatia, BioMEMS and Biomedical Nanotechnology BioMEMS and Biomedical Nanotechnology, III: Therapeutic Micro/Nanotechnology, 1865 (2007).

  4. M. S. Zhukovskii and S. A. Beznosyuk, Nanotekhnika, 1(33), 41 (2013).

    Google Scholar 

  5. M. S. Zhukovskii, S. A. Beznosyuk, A. I. Potekaev, and M. D. Staroatenkov, Theoretical Principles of Computer Nanoengineering of Biometric Nanosystems, Tomsk, NTL Publ. (2011).

    Google Scholar 

  6. A. S. Davydov, Quantum Mechanics: a study aid, third edition, SPb-BHV-Peterburg (2011).

  7. S. A. Beznosyuk, B. F. Minaev, and Z. M. Muldakhmetov, Comput. Theor. Chem., 227, 125 (1991).

    Google Scholar 

  8. A. S. Fomin, M. S. Zhukovskii, and S. A. Beznosyuk, Russ. Phys. J., 49, No. 7, 754 (2006).

    Article  Google Scholar 

  9. M. S. Zhukovskii and S. A. Beznosyuk, Polzunovskii, No. 3, 19 (2009).

  10. S. Beznosyuk, Mater. Sci. Eng. C, 19/1-2, 369 (2002).

    Article  Google Scholar 

  11. S. A. Beznosyuk, A. V. Kolesnikov, D. A. Mezentsev, et al., Mater. Sci. Eng. C, 19/1-2, 91 (2002).

    Article  Google Scholar 

  12. V. E. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Amsterdam-Boston-London-New York, Elsevier Science (2008).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Potekaev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 55–64, May, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beznosyuk, S.A., Zhukovskii, M.S. & Potekaev, A.I. The theory of motion of quantum electromechanical plasmoid nanobots in a condensed-state medium. Russ Phys J 56, 546–556 (2013). https://doi.org/10.1007/s11182-013-0067-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-013-0067-8

Keywords

Navigation