Skip to main content
Log in

Continual–quantum plasmonics with kinematical functions: dipolar resonance and nonlocal polarizability of simple metal made nanoparticles

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this work we formulate the theory of a mesoscopic oscillator equivalent to sp-electron excitations in simple metal made nanoparticles illuminated by incident light. The principles of continuum mechanics have been applied to maintain this goal: the primary hypotheses about the dependences of electron density function upon kinematical generalized coordinates, the stationary action principle, and the perturbation method. On their grounds, dynamic equations describing the motion of electron gas subject to alternating potentials together with the ground state equations have been derived. A methodological advantage of the latter is in the correct (qualitative and quantitative) prediction of Friedel oscillations and electron spill-out through an ion lattice with no demands to use high power computer resources as opposed to the orbital density functional theory. The dynamic equations allow studying of the nanoparticle resonant properties in an analytical form without need of numerically solving them. It has been shown with their use that the resonant frequency of the main dipolar resonance becomes the density functional of the ground state. On the basis of the dynamic equations, the theory of nonlocal polarizability has been deduced that does not impose the homogeneity (or weak inhomogeneity) constraints on the electron gas density. In this context the two following results are of importance. We manage to: (1) to demonstrate the effect of giant nonlocality of the dipole moment—its formation by the events separated by distances significantly larger than nanoparticle dimensions and temporal intervals much larger than the mean free time; (2) to derive the expression of the volumetric mode of compression-tension that is resonant on frequency of the main dipolar resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babar, S., Weaver, J.H.: Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54(3), 477–481 (2015)

    Article  ADS  Google Scholar 

  • Banerjee, A., Harbola, M.K.: Hydrodynamic approach to time-dependent density functional theory; Response properties of metal clusters. J. Chem. Phys. 113(14), 5614–5623 (2000)

    Article  ADS  Google Scholar 

  • Barbry, M., Koval, P., Marchesin, F., Esteban, R., Borisov, A.G., Aizpurua, J., Sánchez-Portal, D.: Atomistic near-field nanoplasmonics: reaching atomistic-scale resolution in nanooptics. Nano Lett. 15(5), 3410–3419 (2015)

    Article  ADS  Google Scholar 

  • Bredov, M.M., Rumyantsev, V.V., Toptygin, I.N.: Classical Electrodynamics, p. 400. Lan Publishing Ltd., St.-Petersburg (2003)

    Google Scholar 

  • Brongersma, M.L., Halas, N.J., Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015)

    Article  ADS  Google Scholar 

  • Chan, G.K.-L., Cohen, A.J., Handy, N.C.: Thomas–Fermi–Dirac–von Weizsäcker models in finite systems. J. Chem. Phys. 114(2), 631–638 (2001)

    Article  ADS  Google Scholar 

  • Charlé, K.-P., König, L., Nepijko, S., Rabin, I., Schulze, W.: The surface plasmon resonance of free and embedded Ag-clusters in the size range 1,5 nm < D < 30 nm. Cryst. Res. Technol. 33(7–8), 1085–1096 (1998)

    Article  Google Scholar 

  • Ciracì, C., Della Sala, F.: Quantum hydrodynamic theory for plasmonics: impact of the electron density tail. Phys. Rev. B. 93(20), 205405 (2016). arXiv:1601.01584

  • David, C., Garcia de Abajo, F.J.: Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8(9), 9558–9566 (2014)

    Article  Google Scholar 

  • Della Sala F., Fabiano, E., Constantin, L.A.: Kinetic–energy–density dependent semilocal exchange-correlation functionals. Int. J. Quantum Chem. 116(22), 1641–1694 (2016)

    Article  Google Scholar 

  • Diaw, A., Murillo, M.S.: A viscous quantum hydrodynamics model based on dynamic density functional theory. Sci. Rep. 7, 15352 (2017)

    Article  ADS  Google Scholar 

  • Ding, K., Chan, C.T.: Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method. Phys. Rev. B 96(12), 125134 (2017). arXiv:1706.05465

  • Ding, K., Chan, C.T.: An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method. J. Phys.: Condens. Matter. 30(8), 084007 (2018). arXiv:1712.00719v1

    ADS  Google Scholar 

  • Ekardt, W.: Work function of small metal particles: self-consistent spherical jellium-background model. Phys. Rev. B 29(4), 1558–1564 (1984)

    Article  ADS  Google Scholar 

  • Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J.: Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012)

    Article  ADS  Google Scholar 

  • Fitzgerald, J.M., Giannini, V.: Battling retardation and nonlocality: the hunt for the ultimate plasmonic cascade nanolens. ACS Photonics 5(6), 2459–2467 (2018). arXiv:1710.10157v2

    Article  Google Scholar 

  • Ford, G.W., Weber, W.H.: Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113(4), 195–287 (1984)

    Article  ADS  Google Scholar 

  • Ginzburg, P., Krasavin, A.V., Wurtz, G.A., Zayats, A.V.: Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2(1), 8–13 (2015)

    Article  Google Scholar 

  • Gunnarsson, O., Lundqvist, B.I.: Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13(10), 4274–4298 (1976)

    Article  ADS  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), 864–871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)

    Article  ADS  Google Scholar 

  • Koval, P., Marchesin, F., Foerster, D., Sánches-Portal, D.: Optical response of silver clusters and their hollow shells from linear-response TDDFT. J. Phys.: Condens. Matter. 28(21), 214001 (2016). arXiv:1512.02104

    ADS  Google Scholar 

  • Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science, vol. 25, p. 535. Springer, Berlin (1995)

    Book  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: Electrodynamics of Continuous Media, vol. 8, p. 475. Pergamon Press Ltd., Oxford (1984) ISBN: 0080302769

    Chapter  Google Scholar 

  • Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: The Classical Theory of Fields, vol. 2, p. 402. Butterworth-Heinemann, Oxford (1980)

    Google Scholar 

  • Letnes, P.A., Simonsen, I., Mills, D.L.: Substrate influence on the plasmonic response of clusters of spherical nanoparticles. Phys. Rev. B 83(7), 075426 (2011)

    Article  ADS  Google Scholar 

  • Li, J.H., Hayashi, M., Guo, G.Y.: Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations. Phys. Rev. B. 88(15), 155437 (2013). arXiv:1307.3631v1

  • Li, X., Fang, H., Weng, X., Zhang, L., Dou, X., Yang, A., Yuan, X.: Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics. Opt. Express 23(23), 29738–29745 (2015)

    Article  ADS  Google Scholar 

  • López–, X., Barron, H., Mottet, C., Weissker, H.C.: Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods—an ab initio TDDFT study. Phys. Chem. Chem. Phys. 16(5), 1820–1823 (2014)

    Article  Google Scholar 

  • Lucas, A., Fong, K.C.: Hydrodynamics of electrons in graphene. J. Phys.: Condens. Matter. 30(5), 053001 (2018). arXiv:1710.08425v2

    ADS  Google Scholar 

  • Marques, M.A.L., Maitra, N.T., Nogueira, F.M.S., Gross, E.K.U., Rubio, A. (eds.): Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics, vol. 837, p. 559. Springer, Berlin (2012)

    Google Scholar 

  • Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, p. 387. Springer, Berlin (1996). (3rd rev. and extended ed.)

    Book  MATH  Google Scholar 

  • Moeferdt, M., Kiel, T., Sproll, T., Intravaia, F., Busch, K.: Plasmonic modes in nanowire dimers: a study based on the hydrodynamic Drude model including nonlocal and nonlinear effects. Phys. Rev. B 97(7), 075431 (2018). arXiv:1802.08446v1

  • Moldabekov, Z.A., Bonitz, M., Ramazanov, T.S.: Theoretical foundations of quantum hydrodynamics for plasmas. Phys. Plasmas 25(3), 031903 (2018). arXiv:1709.02196v1

    Article  ADS  Google Scholar 

  • Montelongo, Y., Tenorio-Pearl, J.O., Williams, C., Zhang, S., Milne, W.I., Wilkinson, T.D.: Plasmonic nanoparticle scattering for color holograms. Proc. Natl. Acad. Sci. U. S. A. 111(35), 12679–12683 (2014)

    Article  ADS  Google Scholar 

  • Naik, G.V., Kim, J., Boltasseva, A.: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1(6), 1090–1099 (2011)

    Article  ADS  Google Scholar 

  • Narang, P., Sundararaman, R., Atwater, H.A.: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5(1), 96–111 (2016)

    Article  Google Scholar 

  • Palade, D.I.: Multiple surface plasmons in an unbounded quantum plasma half-space. Phys. Plasmas 23(7), 074504 (2016). arXiv:1604.05293v1

    Article  ADS  Google Scholar 

  • Palik, E.D. (ed.): Handbook of Optical Constants of Solids, p. 999. Academic Press, San Diego (1998)

    Google Scholar 

  • Parks, J.H., McDonald, S.A.: Evolution of the collective–mode resonance in small adsorbed sodium clusters. Phys. Rev. Lett. 62(19), 2301–2304 (1989)

    Article  ADS  Google Scholar 

  • Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules, p. 333. Oxford University Press Inc., Oxford (1989)

    Google Scholar 

  • Peng, S., McMahon, J.M., Schatz, G.C., Gray, S.K., Sun, Y.: Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. U. S. A. 107(33), 14530–14534 (2010)

    Article  ADS  Google Scholar 

  • Pustovit, V.N., Shahbazyan, T.V.: Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles. Phys. Rev. B 73(8), 085408 (2006). arXiv:0506205v2

  • Rasa, S., et al.: Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2(2), 131–138 (2013a)

    ADS  Google Scholar 

  • Rasa, S., Christensen, T., Wubs, M., Bozhevolnyi, S.I., Mortensen, N.A.: Nonlocal response in thin–film waveguides: loss versus nonlocality and breaking of complementarity. Phys. Rev. B 88(11), 115401 (2013b)

    Article  ADS  Google Scholar 

  • Rasa, S., Bozhevolnyi, S.I., Wubs, M., Mortensen, N.A.: Nonlocal optical response in metallic nanostructures. J. Phys.: Condens. Matter. 27(18), 183204 (2015)

    ADS  Google Scholar 

  • Romero, I., Aizpurua, J., Bryant, G.W., Garcia de Abajo, F.J.: Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14(21), 9988–9999 (2006)

    Article  ADS  Google Scholar 

  • Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997–1000 (1984)

    Article  ADS  Google Scholar 

  • Sanz, J.M., Ortiz, D., Alcaraz de la Osa, R., Saiz, J.M., González, F., Brown, A.S., Losurdo, M., Everitt, H.O., Moreno, F.: UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 117(38), 19606–19615 (2013)

    Article  Google Scholar 

  • Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136(3), 031102 (2012)

    Article  ADS  Google Scholar 

  • Schmidt, M., Haberland, H.: Optical spectra and their moments for sodium clusters, Na + n , with 3 ≤ n≤64. Eur. Phys. J. D 6(1), 109–118 (1999)

    ADS  Google Scholar 

  • Scholl, J.A., Koh, A.L., Dionne, J.A.: Quantum plasmon resonances of individual metallic nanoparticles. Nature 483(7390), 421–427 (2012)

    Article  ADS  Google Scholar 

  • Scholl, J.A., Garcia-Etxarri, A., Koh, A.L., Dionne, J.A.: Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13(2), 564–569 (2013)

    Article  ADS  Google Scholar 

  • Serebrennikov, A.M.: Multipolar resonant particle modes as elementary excitations in chain waveguides: theory, dispersion relations and mathematical modeling. Opt. Commun. 284(21), 5043–5054 (2011)

    Article  ADS  Google Scholar 

  • Serebrennikov, A.M.: Nonlinear continuum mechanical model for investigating plasmonic oscillations phenomena in nanostructured metals. Opt. Commun. 326, 105–113 (2014)

    Article  ADS  Google Scholar 

  • Serebrennikov, A.M.: Four-wave mixing and transverse–longitudinal oscillatory modes in plasmonic nanoparticles: nonlinear theory from variational principles and mathematical simulation. Opt. Quantum Electron. 47(11), 3567–3587 (2015)

    Article  Google Scholar 

  • Shahmansouri, M., Misra, A.P.: Surface plasmon oscillations in a semi-bounded semiconductor plasma. Plasma Sci. Technol. 20(2), 025001 (2018). arXiv:1710.03405

    Article  ADS  Google Scholar 

  • Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J.: Plasmon resonances in large noble-metal clusters. New J. Phys. 4(1), 93.1–93.8 (2002)

    Google Scholar 

  • Stout, B., Auger, J.C., Devilez, A.: Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations. JOSA A 25, 2549–2557 (2008)

    Article  ADS  Google Scholar 

  • Sun, W.G., Wang, J.J., Lu, C., Xia, X.X., Kuang, X.Y., Hermann, A.: Evolution of the structural and electronic properties of medium-sized sodium clusters: a honeycomb-like Na 20 cluster. Inorg. Chem. 56(3), 1241–1248 (2017)

    Article  Google Scholar 

  • Teperik, T.V., Nordlander, P., Aizpurua, J., Borisov, A.G.: Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt. Express 21(22), 27306–27325 (2013). arXiv:1302.3339

    Article  ADS  Google Scholar 

  • Toscano, G., Straubel, J., Kwiatkowski, A., Rockstuhl, C., Evers, F., Xu, H., Mortensen, N.A., Wubs, M.: Resonance shifts and spill-out effects in self- consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015)

    Article  ADS  Google Scholar 

  • van Zyl, B.P., Zaremba, E.: Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in laterally modulated electronic systems. Phys. Rev. B 59(3), 2079–2094 (1999)

    Article  ADS  Google Scholar 

  • van Zyl, B.P., Farrell, A., Zaremba, E., Towers, J., Pisarski, P., Hutchinson, D.A.W.: Nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas. Phys. Rev. A 89(2), 022503 (2014). arXiv:1311.5608v1

  • Varas, A., García-González, P., Feist, J., García-Vidal, F.J., Rubio, A.: Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics 5(3), 409–426 (2016)

    Article  Google Scholar 

  • Wang, Y., Overvig, A.C., Shrestha, S., Zhang, R., Wang, R., Yu, N., Dal Negro, L.: Tunability of indium tin oxide materials for mid-infrared plasmonic applications. Opt. Mater. Express 7(8), 2727–2739 (2017)

    Article  ADS  Google Scholar 

  • Xia, C., Yin, C., Kresin, V.V.: Photoabsorption by volume plasmons in metal nanoclusters. Phys. Rev. Lett. 102(15), 156802 (2009)

    Article  ADS  Google Scholar 

  • Yakubovsky, D.I., Arsenin, A.V., Stebunov, Y.V., Fedyanin, D.Y., Volkov, V.S.: Optical constants and structural properties of thin gold films. Opt. Express 25(21), 25574–25587 (2017)

    Article  ADS  Google Scholar 

  • Yan, W.: Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas. Phys. Rev. B 91(11), 115416 (2015)

    Article  ADS  Google Scholar 

  • Yan, W., Wubs, M., Mortensen, N.A.: Projected dipole model for quantum plasmonics. Phys. Rev. Lett. 115(13), 137403 (2015). arXiv:1504.07113

  • Yannouleas, C., Vigezzi, E., Broglia, R.A.: Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description. Phys. Rev. B 47(15), 9849–9861 (1993)

    Article  ADS  Google Scholar 

  • Yin, J., Krishnamoorthy, H.N.S., Adamo, G., Dubrovkin, A.M., Chong, Y., Zheludev, N.I., Soci, C.: Plasmonics of topological insulators at optical frequencies. NPG Asia Mater. 9, e425 (2017). arXiv:1702.00302

    Article  Google Scholar 

  • Zhang, Y., Zhai, F., Guo, B., Yi, L., Jiang, W.: Quantum hydrodynamic modeling of edge modes in chiral Berri plasmons. Phys. Rev. B 96(4), 045104 (2017). arXiv:1701.06281v2

  • Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B.: Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey M. Serebrennikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Let the vector and scalar potentials be defined accurate within the gradient of an arbitrary function and its temporal derivative as: \({\mathbf{A^{\prime}}} = {\mathbf{A}} + \nabla f\), \({\psi^{\prime}} =\uppsi - {{\partial f} \mathord{\left/ {\vphantom {{\partial f} {\partial t}}} \right. \kern-0pt} {\partial t}}\), respectively. Substituting of \({\mathbf{A^{\prime}}}\) and \({\psi^{\prime}}\) into the interaction energy \({\mathbf{j}}_{4} \cdot {\mathbf{A}}_{4}\) leads to the appearance of the term:

$$\begin{aligned} & \mathop {\lim }\limits_{{diam\;{\varvec{\Omega}} \to \infty }} \int_{{t_{1} }}^{{t_{2} }} {\int_{{\varvec{\Omega}}} {\left\{ {{{\partial (\uprho_{tot} \,f)} \mathord{\left/ {\vphantom {{\partial (\uprho_{tot} \,f)} {\partial t}}} \right. \kern-0pt} {\partial t}} + \nabla \cdot ({\mathbf{j}}_{tot} \,f)} \right\}\;d{\mathbf{r}}\,dt} } \\ & \quad = \int_{{\,R^{3} }} {\left. {(\uprho_{tot} \,f){\kern 1pt} } \right|_{{t_{1} }}^{{t_{2} }} \;d{\mathbf{r}}} + \mathop {\lim }\limits_{diam\;\varSigma \to \infty } \;\int_{{t_{1} }}^{{t_{2} }} {\oint_{\,\varSigma } {{\mathbf{n}} \cdot\uprho_{tot} {\mathbf{v}}\,f\;d{\mathbf{r}}\,dt} } \\ \end{aligned}$$
(23)

inside the action S, where \({\mathbf{j}}_{tot} = {\mathbf{j}}_{e} + {\mathbf{j}}_{e}^{src}\) and \(\uprho_{tot} =\uprho_{e} +\uprho_{e}^{ + } +\uprho_{e}^{src}\). The second term in the right hand side of (23) vanishes, because \({\mathbf{v}}\) is bounded and \(\mathop {\lim }\nolimits_{{|{\mathbf{r}}| \to \infty }}\uprho_{tot} = 0\). The first term variation yields vanishing quantity, because \(\uprho_{tot}\) is varied only at the extremities of the time interval \((t_{1} ,\;t_{2} )\) at which: \(\delta {\mathbf{u}}({\mathbf{r}},t_{1} ) = \delta {\mathbf{u}}({\mathbf{r}},t_{2} ) = 0\). Therefore, the gauge dependence of \({\mathbf{A^{\prime}}}\) and \({\psi^{\prime}}\) does not add new terms to the action variation: \(\delta S^{\prime} = \delta S\). Consequently, the motion equation remains unchanged. No new terms appear in the free EM field Lagrangian due to the gauge invariance of the fields \({\mathbf{E}}\) and \({\mathbf{B}}\). The variation of (23) over generalized coordinates \({\mathbf{A}}\) and \(\uppsi\) yields null identically, because (23) is independent of them.

Appendix 2

In Eq. (7) the following energy functional has been used:

$$F = - \underbrace {{(3\uppi^{2} )^{{{\raise0.7ex\hbox{$2$} \!\mathord{\left/ {\vphantom {2 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} \frac{{3\hbar^{2} }}{10m}\;\uprho_{0}^{{{\raise0.7ex\hbox{$5$} \!\mathord{\left/ {\vphantom {5 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} }}_{{{\rm T}homas - Fermi\;KE}} - \underbrace {{\uplambda_{vW} \frac{{\hbar^{2} }}{8m}\frac{{|\nabla\uprho_{0} |^{2} }}{{\uprho_{0} }}}}_{{von\;Weizs\ddot{a}cker\;KE}} + \underbrace {{\frac{{3e^{2} }}{{16\uppi \upvarepsilon _{0} }}\left( {\frac{3}{\uppi}} \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}}\uprho_{0}^{{{\raise0.7ex\hbox{$4$} \!\mathord{\left/ {\vphantom {4 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} }}_{Dirac\;(LDA)\;exchange\;energy \, } + \underbrace {{0.0333\,E_{h} \;\uprho_{0} \,g_{GL} (x)}}_{\begin{subarray}{l} Correlation\;correction\;of \\ Gunnarsson\;and\;Lundqvist \end{subarray} },$$

where \(\uplambda_{vW}\) is the von Weizsäcker parameter, \(E_{h}\)-the Hartree energy, \(x = \frac{1}{{11.4\,a_{B} }}\left( {\frac{3}{{4\uppi \uprho _{0} }}} \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}}\)-a dimensionless complex; \(g_{GL} (x) = \left( {1 + x^{3} } \right)\ln \left( {1 + x^{ - 1} } \right) - x^{2} + ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})x - {1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0pt} 3}\) (Ekardt 1984; Gunnarsson and Lundqvist 1976; Yannouleas et al. 1993; Banerjee and Harbola 2000). The coefficient \(\uplambda_{vW}\) in the von Weizsäcker definition is unity (Parr and Yang 1989). The density matrix expansion on powers of \(\hbar\) yields the value: \(\uplambda_{vW} = {1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-0pt} 9}\) (Parr and Yang 1989). In the Thomas–Fermi–Dirac–von Weizsäcker theory of energy functionals \(\uplambda_{vW}\) is considered to be an empirical quantity localized inside the interval \(({1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-0pt} 9},1)\); its exact value is unknown and there exist different recommendations on how to choose it (Yan 2015; Li et al. 2015; Parr and Yang 1989; Chan et al. 2001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebrennikov, A.M. Continual–quantum plasmonics with kinematical functions: dipolar resonance and nonlocal polarizability of simple metal made nanoparticles. Opt Quant Electron 51, 253 (2019). https://doi.org/10.1007/s11082-019-1967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1967-9

Keywords

Navigation