Skip to main content
Log in

Modeling of the mechanism of reductive allylation of norbornadiene in the presence of Pd0 complexes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Hydroallylation of norbornadiene (NBD) with allyl formate (AF) in the presence of the Pd0 complexes with the formation of 5-allyl-2-norbornene was modeled by the method based on the DFT-PBE/L11 density functional theory. According to the calculation results, 5-allyl-2-norbornene is formed via two mechanisms. The first assumes that the C-C bond between the NBD and allyl ligand is formed before the cleavage of the formyl C-H bond and elimination of CO2, whereas following the second mechanism the bond is formed after these processes. For both mechanisms, Pd(AF)(MeCN) is the catalytically active complex and CNBD-CAll bond formation is the rate-determining step with the Gibbs activation energy equal to 22.8 and 21.3 kcal mol−1for the first and second mechanisms, respectively. High selectivity to 5-allyl-2-norbornene in the absence of phosphine ligands is attributable to the kinetically hindered formation of the second C-C bond needed for the generation of product of oxidative allylation of NBD. The predominance of the exo-substituted product is due to the formation of the thermodynamically stable complex with the bidentate coordination of NBD favored by the endo-coordination of the NBD molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. R. Flid, M. L. Gringolts, R. S. Shamsiev, E. Sh. Finkelshtein, Russ. Chem. Rev., 2018, 87, 1169.

    Article  CAS  Google Scholar 

  2. M. Catellani, G. Chiusoli, E. Dradi, G. Salerno, J. Organomet. Chem., 1979, 177, 29.

    Article  Google Scholar 

  3. U. M. Dzhemilev, R. I. Khusnutdinov, G. A. Tolstikov, Russ. Chem. Rev., 1987, 56, 36.

    Article  Google Scholar 

  4. U. M. Dzhemilev, R. I. Khusnutdinov, D. K. Galeev, O. M. Nefedov, G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1987, 36, 122.

    Article  Google Scholar 

  5. E. M. Evstigneeva, R. S. Shamsiev, V. R. Flid, Vestn. MITKhT im. M. V. Lomonosova [Bulletin of M. V. Lomonosov Moscow Institute of Chemical Technologies], 2006, 1, No. 3, 3 (in Russian).

    Google Scholar 

  6. E. M. Evstigneeva, V. R. Flid, Russ. Chem. Bull., 2008, 57, 837.

    Article  CAS  Google Scholar 

  7. I. P. Stolyarov, A. E. Gekhman, I. I. Moiseev, A. Yu. Kolesnikov, E. M. Evstigneeva, V. R. Flid, Russ. Chem. Bull., 2007, 56, 320.

    Article  CAS  Google Scholar 

  8. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Russ. Chem. Bull., 2018, 67, 2234.

    Article  CAS  Google Scholar 

  9. S. A. Durakov, R. S. Shamsiev, V. R. Flid, A. E. Gekhman, Kinet. Catal., 2019, 60, 245.

    Article  CAS  Google Scholar 

  10. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Article  CAS  Google Scholar 

  11. D. N. Laikov, Yu. A. Ustynyuk, Russ. Chem. Bull., 2005, 54, 820.

    Article  CAS  Google Scholar 

  12. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  13. D. N. Laikov, Chem. Phys. Lett., 2005, 416, 116.

    Article  CAS  Google Scholar 

  14. R. S. Shamsiev, V. R. Flid, Russ. Chem. Bull., 2013, 62, 2301.

    Article  CAS  Google Scholar 

  15. D. V. Dmitriev, R. S. Shamsiev, Ha Ngok Thien, V. R. Flid, Russ. Chem. Bull., 2013, 62, 2385.

    Article  CAS  Google Scholar 

  16. K. T. Egiazaryan, R. S. Shamsiev, V. R. Flid, Fine Chem. Technol., 2019, 14, No. 6, 56.

    Article  CAS  Google Scholar 

  17. E. M. Simmons, J. F. Hartwig, Angew. Chem., Int. Ed., 2012, 51, 3066.

    Article  CAS  Google Scholar 

  18. Z. Mao, C. T. Campbell, ACS Catal., 2020, 10, 4181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Shamsiev.

Additional information

This work was financially supported by the Russian Science Foundation (Project No. 18-13-00415). The calculations were performed using computational resources of the Joint Supercomputer Center of the Russian Academy of Sciences.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 316–322, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsiev, R.S., Egiazaryan, K.T. & Flid, V.R. Modeling of the mechanism of reductive allylation of norbornadiene in the presence of Pd0 complexes. Russ Chem Bull 70, 316–322 (2021). https://doi.org/10.1007/s11172-021-3087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3087-5

Key words

Navigation