Skip to main content
Log in

Mono-C,O-chelated bromo- and triflatosilanes with an amino acid moiety: salts or covalently bonded complexes?

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Derivatives of the amino acids sarcosine and proline – triflates TsN(Me)CH2C(O)N(Me)-CH2SiMe2OTf and Ns–Pro–N(Me)CH2SiMe2OTf (Ns is 4-NO2C6H4SO2) – were synthesized by the reaction of trimethylsilyl triflate with halosilanes prepared previously. Bromide NsNHCH(Me)C(O)N(Me)CH2SiMe2Br was synthesized by the cleavage of the Si–O–Si moiety of the appropriate disiloxane with excess acetyl bromide. The X-ray diffraction study of these compounds and of the previously characterized bromide TsN(Ac)CH2C(O)N(Me) CH2SiMe2Br showed that the Si–O coordination bond lengths in the triflates are 1.7692(14)– 1.8623(14) Å. The interatomic distances between the bromine and silicon atoms are 2.7095(8) and 2.9704(7) Å, which indicates that these bonds are weak. To elucidate the nature of Si…X bonding (X = OTf, Br), the topological analysis of electron density was performed and 29Si NMR chemical shifts were calculated. The interatomic Si…X interaction in triflate TsN(Me)CH2C(O)- N(Me)CH2SiMe2OTf and bromide TsN(Ac)CH2C(O)N(Me)CH2SiMe2Br is weak. In triflate Ns–Pro–N(Me)CH2SiMe2OTf and bromide NsNHCH(Me)C(O)N(Me) CH2 SiMe2Br, the Si…X interaction is significantly stronger and corresponds to a weak coordination bond. Hence, the tosylates can be considered as salts, whereas the para-nitrobenzenesulfonyl derivatives are monochelated five-coordinate silicon complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Macharashvili, V. E. Shklover, Yu. T. Struchkov, G. I. Oleneva, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, J. Chem. Soc., Chem. Commun., 1988, 683–685.

    Google Scholar 

  2. Y. E. Ovchinnikov, A. A. Macharashvili, Yu. T. Struchkov, A. G. Shipov, Y. I. Baukov, J. Struct. Chem., 1994, 35, 91–100.

    Article  Google Scholar 

  3. A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, J. Organomet. Chem., 2000, 606, 125–131.

    Article  CAS  Google Scholar 

  4. A. Bassindale, J. Organomet. Chem., 2001, 619, 132–140.

    Article  CAS  Google Scholar 

  5. A. R. Bassindale, M. Borbaruah, S. J. Glynn, D. J. Parker, P. G. Taylor, J. Chem. Soc., Perkin Trans. 2, 1999, 2099–2109.

    Google Scholar 

  6. A. R. Bassindale, Y. I. Baukov, M. Borbaruah, S. J. Glynn, V. V. Negrebetsky, D. J. Parker, P. G. Taylor, R. Turtle, J. Organomet. Chem., 2003, 669, 154–163.

    Article  CAS  Google Scholar 

  7. A. V. Vologzhanina, A. A. Korlyukov, M. Y. Antipin, Acta Cryst., 2008, B64, 448–455.

    Google Scholar 

  8. E. F. Belogolova, V. F. Sidorkin, Russ. Chem. Bull., 2002, 51, 1472–1476.

    Google Scholar 

  9. E. F. Belogolova, E. P. Doronina, M. A. Belogolov, V. F. Sidorkin, J. Mol. Struct.: THEOCHEM, 2010, 950, 72–78.

    Article  CAS  Google Scholar 

  10. V. F. Sidorkin, E. F. Belogolova, V. A. Pestunovich, J. Mol. Struct.: THEOCHEM, 2001, 538, 59–65.

    Article  CAS  Google Scholar 

  11. A. A. Nikolin, E. P. Kramarova, A. A. Korlyukov, D. E. Arkhipov, A. G. Shipov, Yu. I. Baukov, A. A. Lagunin, T. A. Shmigol, Vad. V. Negrebetsky, Russ. Chem. Bull., 2017, 66, 571–573.

    Article  CAS  Google Scholar 

  12. A. A. Korlyukov, K. A. Lyssenko, M. Yu. Antipin, Russ. Chem. Bull., 2002, 51, 1423–1432.

    Article  CAS  Google Scholar 

  13. A. A. Macharashvili, V. E. Shklover, Y. T. Struchkov, Yu. I. Baukov, E. P. Kramarova, G. I. Oleneva, J. Organomet. Chem., 1987, 327, 167–172.

    Article  CAS  Google Scholar 

  14. S. Muhammad, A. R. Bassindale, P. G. Taylor, L. Male, S. J. Coles, M. B. Hursthouse, Organometallics, 2011, 30, 564–571.

    Article  CAS  Google Scholar 

  15. M. Sohail, R. Panisch, A. Bowden, A. R. Bassindale, P. G. Taylor, A. A. Korlyukov, D. E. Arkhipov, L. Male, S. Callear, S. J. Coles, M. B. Hursthouse, R. W. Harrington, W. Clegg, Dalton Trans., 2013, 42, 10971–10981.

    Article  CAS  PubMed  Google Scholar 

  16. A. R. Bassindale, D. J. Parker, P. G. Taylor, N. Auner, B. Herrschaft, J. Organomet. Chem., 2003, 667, 66–72.

    Article  CAS  Google Scholar 

  17. A. A. Korlyukov, S. A. Pogozhikh, Yu. E. Ovchinnikov, K. A. Lyssenko, M. Yu. Antipin, A. G. Shipov, O. A. Zamyshlyaeva, E. P. Kramarova, V. V. Negrebetsky, I. P. Yakovlev, Yu. I. Baukov, J. Organomet. Chem., 2006, 691, 3962–3975.

    Article  CAS  Google Scholar 

  18. A. G. Shipov, E. P. Kramarova, H. Fang, D. E. Arkhipov, A. A. Nikolin, S. Y. Bylikin, V. V. Negrebetsky, A. A. Korlyukov, N. A. Voronina, A. R. Bassindale, P. G. Taylor, Yu. I. Baukov, J. Organomet. Chem., 2013, 741–742, 114–121.

    Google Scholar 

  19. N. F. Lazareva, A. Yu. Nikonov, Russ. Chem. Bull., 2017, 66, 1138–1162.

    Article  CAS  Google Scholar 

  20. F. H. Allen, Acta Cryst, 2002, B58, 380–388.

    Google Scholar 

  21. N. K. Hansen, P. Coppens, Acta Cryst., 1978, A34, 909–921.

    Google Scholar 

  22. A. A. Korlyukov, Russ. Chem. Rev., 2015, 84, 422–440.

    Article  CAS  Google Scholar 

  23. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, 1990.

    Google Scholar 

  24. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1–S19.

    Google Scholar 

  25. E. Espinosa, I. Alkorta, I. Rozas, J. Elguero, E. Molins, Chem. Phys. Lett., 2001, 336, 457–461.

    Article  CAS  Google Scholar 

  26. M. G. Voronkov, V. P. Mileshkevich, Yu. A. Yuzhelevskii, Siloksanovaya svyaz´ [Siloxane Bonding], Nauka, Novosibirsk, 1976 (in Russian).

    Google Scholar 

  27. E. L. Kupche, E. Ya. Lukevits, Russ. Chem. Rev., 1989, 58, 1777.

    Google Scholar 

  28. V. V. Negrebetsky, V. V. Negrebetsky, A. G. Shipov, E. P. Kramorova, Y. I. Baukov, J. Organomet. Chem., 1995, 496, 103–107.

    Article  CAS  Google Scholar 

  29. V. V. Negrebetsky, S. N. Tandura, Yu. I. Baukov, Russ. Chem. Rev., 2009, 78, 21–51.

    Article  CAS  Google Scholar 

  30. L. Olsson, C.-H. Ottosson, D. Cremer, J. Am. Chem. Soc., 1995, 117, 7460–7479.

    Article  CAS  Google Scholar 

  31. E. P. Doronina, V. F. Sidorkin, N. F. Lazareva, J. Phys. Chem. A, 2015, 119, 3663–3673.

    Article  CAS  PubMed  Google Scholar 

  32. E. F. Belogolova, V. F. Sidorkin, J. Phys. Chem. A, 2013, 117, 5365–5376.

    Article  CAS  PubMed  Google Scholar 

  33. A. A. Nikolin, O. V. Kuznetsova, D. E. Arkhipov, E. P. Kramarova, A. G. Shipov, A. N. Egorochkin, A. A. Korlyukov, Yu. I. Baukov, Vad. V. Negrebetskii, Russ. Chem. Bull., 2013, 62, 1892–1899.

    Article  CAS  Google Scholar 

  34. A. A. Nikolin, E. P. Kramarova, A. G. Shipov, Y. I. Baukov, V. V. Negrebetsky, A. A. Korlyukov, D. E. Arkhipov, A. Bowden, S. Y. Bylikin, A. R. Bassindale, P. G. Taylor, Organometallics, 2012, 31, 4988–4997.

    Article  CAS  Google Scholar 

  35. . A. Nikolin, V. V. Negrebetsky, Russ. Chem. Rev., 2014, 83, 848–883.

    Article  CAS  Google Scholar 

  36. The Chemistry of Organic Silicon Compounds, Eds S. Patai, Z. Rappoport, Y. Apeloig, Wiley, Chichester–New York, 1989.

  37. A. G. Shipov, A. A. Korlyukov, E. P. Kramarova, D. E. Arkhipov, S. Yu. Bylikin, Kh. Fan, S. A. Pogozhikh, T. P. Murasheva, V. V. Negrebetsky, V. N. Khrustalev, Yu. E. Ovchinnikov, A. R. Bassindale, P. G. Taylor, Yu. I. Baukov, Russ. J. Org. Chem., 2011, 81, 2428–2439.

    CAS  Google Scholar 

  38. A. K. Wolf, J. Glinnemann, L. Fink, E. Alig, M. Bolte, M. U. Schmidt, Acta Cryst., 2010, B66, 229–236.

    Google Scholar 

  39. A. G. Shipov, E. P. Kramarova, T. P. Murasheva, A. A. Korlyukov, S. A. Pogozhikh, S. A. Tarasenko, V. V. Negrebetsky, I. P. Yakovlev, Yu. I. Baukov, Russ. J. Org. Chem., 2011, 81, 2428–2439.

    CAS  Google Scholar 

  40. E. Klieger, E. Schroder, Arch. Pharm. (Weinheim), 1973, 306, 834.

    Article  CAS  Google Scholar 

  41. A. A. Nikolin, D. E. Arkhipov, A. G. Shipov, E. P. Kramarova, N. A. Koval´chuk, A. A. Korlyukov, V. V. Negrebetsky, Yu. I. Baukov, A. R. Bassindale, P. G. Taylor, A. Bowden, S. Yu. Bylikin, Chem. Heterocycl. Compd., 2011, 47, 1565–1583.

    Article  CAS  Google Scholar 

  42. G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.

    Google Scholar 

  43. G. M. Sheldrick, Acta Cryst, 2015, C71, 3–8.

    Google Scholar 

  44. G. Kresse, J. Hafner, Phys. Rev. B, 1993, 47, 558.

    Article  CAS  Google Scholar 

  45. G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  46. G. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169.

    Article  CAS  Google Scholar 

  47. G. Kresse, J. Furthmuller, Comput. Mat. Sci., 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  48. G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758.

    Article  CAS  Google Scholar 

  49. X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, D. C. Allan, Comput. Mat. Sci., 2002, 25, 478–492.

    Article  Google Scholar 

  50. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.01; Gaussian, Inc.: Wallingford, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Korlyukov or A. A. Nikolin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 0137–0148, January, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korlyukov, A.A., Arkhipov, D.E., Volodin, A.D. et al. Mono-C,O-chelated bromo- and triflatosilanes with an amino acid moiety: salts or covalently bonded complexes?. Russ Chem Bull 68, 137–148 (2019). https://doi.org/10.1007/s11172-019-2429-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-019-2429-z

Key words

Navigation