Skip to main content
Log in

Kinetics and mechanism of thermal decomposition of nitropyrazoles

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The decomposition of mono-, di-, and trinitropyrazole derivatives in the condensed state was studied by the manometric method. The reaction rate depends on the number and position of nitro groups in the pyrazole cycle and on the polarity of the medium and aggregate state of the substance. The activation energy of the initial non-catalytic stage of decomposition Е 1 decreases on going from monoto trinitropyrazoles from 142 to 132 kJ mol−1, and the preexponential factor is 109±0.5 s−1. In a diphenyl solution the decomposition rate is lower than that in the melt, and this difference decreases with increasing in the number of nitro groups in the molecule. For the decomposition of trinitropyrazole in the solid state, Е 1 decreases by 10 kJ mol−1. All these facts are explained in terms of the mechanism, according to which the reaction occurs as the oxidation of the adjacent carbon atom by the nitro group and proceeds via a strongly polar cyclic transition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Dalinger, G. P. Popova, I. A. Vatsadze, T. K. Shkineva, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 2185 [Izv. Akad. Nauk, Ser. Khim., 2009, 2120]

    Article  CAS  Google Scholar 

  2. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, S. A. Shevelev, Mendeleev Commun., 2010, 20, 253.

    Article  CAS  Google Scholar 

  3. G. Hervé, C. Roussel, H. Graindorge, Angew. Chem., Int. Ed. Engl., 2010, 49, 3177.

    Article  Google Scholar 

  4. Yu. V. Nelyubina, I. L. Dalinger, K. A. Lyssenko, Angew. Chem., Int. Ed. Engl., 2011, 50, 2892.

    Article  CAS  Google Scholar 

  5. Y. Zhang, Y. Guo, T.-H. Joo, D. A. Parrish, J. M. Shreeve, Chem. Eur. J., 2010, 16, 10778.

    Article  CAS  Google Scholar 

  6. Y. Zhang, D. A. Parrish, J. M. Shreeve, J. Mater. Chem., 2012, 22, 12659.

    Article  CAS  Google Scholar 

  7. J. Zhong, C. He, D. A. Parrish, J. M. Shreeve, Chem. Eur. J., 2013, 19, 8929.

    Article  Google Scholar 

  8. C. He, J. Zhang, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2013, 1, 2863.

    Article  CAS  Google Scholar 

  9. T. M. Klapötke, A. Penger, C. Pfluger, J. Strierstorfer, M. Suceska, Eur. J. Inorg. Chem., 2013, 4667

    Google Scholar 

  10. Y. Zhang, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2014, 2, 3200.

    Article  Google Scholar 

  11. S. Ek, L. Yudina Wahlström, N. Latypov, J. Chem. Eng., 2011, 5, 929.

    CAS  Google Scholar 

  12. A. A. Zaytsev, I. L. Dalinger, S. A. Chevelev, Russ. Chem. Rev., 2009, 78, 589.

    Article  Google Scholar 

  13. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, B. I. Ugrak, S. A. Shevelev, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 1631 [Izv. Akad. Nauk, Ser. Khim., 2010, 1589]

    Article  CAS  Google Scholar 

  14. I. L. Dalinger, T. K. Shkineva, I. A. Vatsadze, G. P. Popova, S. A. Shevelev, Mendeleev Commun., 2011, 21, 48.

    Article  CAS  Google Scholar 

  15. A. B. Sheremetev, Y. L. Yudin, N. V. Palysaeva, K. Y. Suponitsky, J. Heterocycl. Chem., 2012, 49, 394.

    Article  CAS  Google Scholar 

  16. N. V. Palysaeva, K. P. Kumpan, M. I. Struchkova, I. L. Dalinger, A. V. Kormanov, N. S. Aleksandrova, V. M. Chernyshev, D. F. Pyreu, K. Yu. Suponitsky, A. B. Sheremetev, Org. Lett., 2014, 16, 406.

    Article  CAS  Google Scholar 

  17. I. Dalinger, S. Shevelev, V. Korolev, D. Khakimov, T. Pivina, A. Pivkina, O. Ordzhonikidze, Yu. Frolov, J. Therm. Anal. Calorim., 2011, 105, 509.

    Article  CAS  Google Scholar 

  18. I. Dalinger, A. Pivkina, O. Gryzlova, V. Korolev, T. Pivina, Yu. Nelyubina, S. Shevelev, Yu. Frolov, Proc. 38th Intern. Pyrotechnics Seminar (Denver, Colorado, USA, 12–15 June 2012), Denver, 2012, 479.

  19. P. Ravi, G. M. Gore, A. K. Sikder, S. P. Tewari, Thermochim. Acta, 2012, 528, 53.

    Article  CAS  Google Scholar 

  20. Y. L. Wang, F. Q. Zhao, Y. P. Ji, Q. Pan, J. H. Yi, T. An, W. Wang, T. Yu, X. M. Lu, J. Anal. Appl. Pyrolysis, 2012, 98, 231.

    Article  CAS  Google Scholar 

  21. P. Ravi, A. A. Vargeese, S. P. Tewari, Thermochim. Acta, 2012, 550, 83.

    Article  CAS  Google Scholar 

  22. J. W. A. M. Janssen, H. J. Koeners, C. G. Kruse, C. L. Habraken, J. Org. Chem., 1973, 38, 1777.

    Article  Google Scholar 

  23. Yu. Shu, V. V. Dubikhin, G. M. Nazin, Khim. Fiz. [Chemical Physics], 2010, 29, 29.(in Russian).

    CAS  Google Scholar 

  24. G. B. Manelis, G. M. Nazin, V. G. Prokudin, Russ. Chem. Bull. (Int. Ed.), 2011, 60, 1440 [Izv. Akad. Nauk, Ser. Khim., 2011, 1417].

    Article  CAS  Google Scholar 

  25. G. M. Khrapkovskii, A. G. Shamov, E. V. Nikolaeva, D. V. Chachkov, Russ. Chem. Rev., 2009, 78, 903.

    Article  CAS  Google Scholar 

  26. N. H. Kinstle, I. G. Stam, J. Org. Chem., 1970, 35, 1771.

    Article  CAS  Google Scholar 

  27. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, V. A. Strunin, Termicheskoe razlozhenie i gorenie vzryvchatykh veshchestv i porokhov [Thermal Decomposition and Combustion of Explosives and Gunpowders], Nauka, Moscow, 1996, 223 pp. (in Russian).

    Google Scholar 

  28. D. C. Nonhhebel, J. C. Walton, Free-Radical Chemistry, Cambridge University Press, Cambridge, 1974.

    Google Scholar 

  29. A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961, 489 pp.

    Google Scholar 

  30. S. W. Benson, Thermochemical Kinetics, J. Wiley and Sons INC, New York–London–Sydney, 1963, 320 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Prokudin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 0126–0131, January, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubikhin, V.V., Nazin, G.M., Prokudin, V.G. et al. Kinetics and mechanism of thermal decomposition of nitropyrazoles. Russ Chem Bull 64, 127–131 (2015). https://doi.org/10.1007/s11172-015-0830-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-015-0830-9

Keywords

Navigation