Skip to main content
Log in

Investigating the effect of π-configurations and methoxy substitution on donor and π- spacers based dyes for dye-sensitized solar cell applications–computational approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Triphenylamine and methoxy substituted triphenylamine-based dyes are examined by density-functional theory and time-dependent density-functional theory. The designed dyes' optical, spectroscopic, and electrochemical properties were investigated for dye-sensitized solar cell applications. The optimized geometries have significantly the highest occupied molecular orbital and lowest unoccupied molecular orbital values for the better electron injection and regeneration process. The electronic absorption spectrum analysis shows the better adsorption region from UV–Visible to near IR in all the designed dyes. The natural bond orbital and frontier molecular orbital analysis reveals that the electron-donating ability, accepting ability, and intramolecular charge transfer occur in dyes. The methoxy substitution in the donor and π-spacer positions enhances the optical, spectroscopic, and electrochemical properties. In this present work, we identified that the methoxy substituted donor has a higher absorption maximum (λmax), good charge separation, better intramolecular charge transfer, and significant electrochemical properties. This work reveals that the position of the π-spacer subunit and methoxy substitution in the donor and π-spacer plays a major role in designing efficient dyes for dye-sensitized solar cells. The group-II (TPCT-7, TPCT-8, TPCT-9, TPCT-10, TPCT-11 and TPCT-12) and configuration-5 (TPCT-5, TPCT-11, TPCT-17 and TPCT-23) dyes are more efficient for dye-sensitized solar cell application, particularly TPCT-11 is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Heng, B. An, H. Ren, Y. Hu, X. Guo, L. Mao, L. Wang, J. Zhang, J. Phys. Chem. C 124, 15036 (2020)

    Article  CAS  Google Scholar 

  2. R. Govindaraj, N. Santhosh, M. Senthil Pandian, P. Ramasamy, M. Sumita, J. Mater. Sci. Mater. Electron. 29, 3736 (2018)

    Article  CAS  Google Scholar 

  3. F.I. Chowdhury, M.H. Buraidah, A.K. Arof, B.E. Mellander, I.M. Noor, Sol. Energy 196, 379 (2020)

    Article  CAS  Google Scholar 

  4. I.A. Ji, H.M. Choi, J.H. Bang, Mater. Lett. 123, 51 (2014)

    Article  CAS  Google Scholar 

  5. C. Gao, Q. Han, M. Wu, J. Energy Chem. 27, 703 (2018)

    Article  Google Scholar 

  6. S. El Mzioui, S.M. Bouzzine, İ Sidir, M. Bouachrine, M.N. Bennani, M. Bourass, M. Hamidi, J. Mol. Model. 25, 92 (2019)

    Article  Google Scholar 

  7. J. Zhang, H.-B. Li, S.-L. Sun, Y. Geng, Y. Wu, Z.-M. Su, J. Mater. Chem. 22, 568 (2012)

    Article  CAS  Google Scholar 

  8. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Chem. Commun. 51, 15894 (2015)

    Article  CAS  Google Scholar 

  9. P. Pounraj, V. Mohankumar, M.S. Pandian, P. Ramasamy, J. Mol. Model. 24, 1 (2018)

    Article  CAS  Google Scholar 

  10. W.-J. Fan, Y.-Z. Chang, J.-L. Zhao, Z.-N. Xu, D.-Z. Tan, Y.-G. Chen, New J. Chem. 42, 20163 (2018)

    Article  CAS  Google Scholar 

  11. Y. Guo, H. Zhu, G. Yang, G. Liu, H. Yan, B. Zhu, S. Li, Y. Sun, G. Li, J. Theor. Comput. Chem. 13, 1450062 (2014)

    Article  CAS  Google Scholar 

  12. Z. Gao, M. Hao, Z. Li, Chem. Phys. Lett. 764, 138264 (2021)

    Article  CAS  Google Scholar 

  13. Z.M.E. Fahim, S.M. Bouzzine, Y. Ait Aicha, M. Bouachrine, M. Hamidi, Res. Chem. Intermed. 44, 2009 (2018)

    Article  CAS  Google Scholar 

  14. M.I. Abdullah, M.R.S.A. Janjua, M.F. Nazar, A. Mahmood, Bull. Chem. Soc. Jpn. 86, 1272 (2013)

    Article  CAS  Google Scholar 

  15. A. Slimi, M. Hachi, A. Fitri, A.T. Benjelloun, S. Elkhattabi, M. Benzakour, M. Mcharfi, M. Khenfouch, I. Zorkani, M. Bouachrine, J. Photochem. Photobiol. A Chem. 398, 112572 (2020)

    Article  CAS  Google Scholar 

  16. A. Mahmood, J.L. Wang, Energy Environ. Sci. 14, 90 (2021)

    Article  CAS  Google Scholar 

  17. A. Mahmood, J.L. Wang, J. Mater. Chem. A 9, 15684 (2021)

    Article  CAS  Google Scholar 

  18. R. Govindarasu, M.K. Subramanian, A. Arunkumar, S. Shanavas, P.M. Anbarasan, T. Ahamad, S.M. Alshehri, J. Iran. Chem. Soc. 18, 1279 (2021)

    Article  CAS  Google Scholar 

  19. M. Lazrak, H. Toufik, S.M. Bouzzine, F. Lamchouri, Res. Chem. Intermed. 46, 3961 (2020)

    Article  CAS  Google Scholar 

  20. P. Pounraj, P. Ramasamy, M. Senthil Pandian, J. Mol. Graph. Model. 102, 107779 (2021)

    Article  CAS  Google Scholar 

  21. H.T. Turan, O. Kucur, B. Kahraman, S. Salman, V. Aviyente, Phys. Chem. Chem. Phys. 20, 3581 (2018)

    Article  CAS  Google Scholar 

  22. D. Seo, K.W. Park, J. Kim, J. Hong, K. Kwak, Comput. Theor. Chem. 1081, 30 (2016)

    Article  CAS  Google Scholar 

  23. V.D. Gupta, A.B. Tathe, V.S. Padalkar, P.G. Umape, N. Sekar, Dye. Pigment. 97, 429 (2013)

    Article  CAS  Google Scholar 

  24. A. Mahmood, S.U.D. Khan, U.A. Rana, J. Comput. Electron. 13, 1033 (2014)

    Article  CAS  Google Scholar 

  25. M.H. Tahir, T. Mubashir, T.U.H. Shah, A. Mahmood, J. Phys. Org. Chem. 32, e3909 (2019)

    Article  Google Scholar 

  26. A. Mahmood, M. Hussaintahir, A. Irfan, B. Khalid, A.G. Al-Sehemi, Bull. Korean Chem. Soc. 36, 2615 (2015)

    Article  CAS  Google Scholar 

  27. U. Daswani, U. Singh, P. Sharma, A. Kumar, J. Phys. Chem. C 122, 14390 (2018)

    Article  CAS  Google Scholar 

  28. O. Christiansen, J. Gauss, J.F. Stanton, Chem. Phys. Lett. 305, 147 (1999)

    Article  CAS  Google Scholar 

  29. R. Venkatraman, S.V.K. Panneer, E. Varathan, V. Subramanian, J. Phys. Chem. A 124, 3374 (2020)

    Article  CAS  Google Scholar 

  30. R.G. Parr, L.V. Szentpály, S. Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  CAS  Google Scholar 

  31. J.L. Gázquez, A. Cedillo, A. Vela, J. Phys. Chem. A 111, 1966 (2007)

    Article  Google Scholar 

  32. Y. Li, Y. Li, P. Song, F. Ma, J. Liang, M. Sun, RSC Adv. 7, 20520 (2017)

    Article  CAS  Google Scholar 

  33. Z. Yang, Y. Liu, C. Liu, C. Lin, C. Shao, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 167, 127 (2016)

    Article  CAS  Google Scholar 

  34. M. Li, L. Kou, L. Diao, Q. Zhang, Z. Li, Q. Wu, W. Lu, D. Pan, Z. Wei, J. Phys. Chem. C 119, 9782 (2015)

    Article  CAS  Google Scholar 

  35. P. Xu, C.R. Zhang, Y.Z. Wu, L.H. Yuan, Y.H. Chen, Z.J. Liu, H.S. Chen, J. Phys. Chem. A 124, 3626 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, R. Anandha Krishnan gratefully acknowledges Sri Siva Subramaniya Nadar College of Engineering for providing research facility and fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Anandha Krishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, R.A., Pounraj, P., Govindaraj, R. et al. Investigating the effect of π-configurations and methoxy substitution on donor and π- spacers based dyes for dye-sensitized solar cell applications–computational approach. Res Chem Intermed 48, 1877–1906 (2022). https://doi.org/10.1007/s11164-022-04698-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04698-6

Keywords

Navigation