Skip to main content
Log in

Synthesis of novel metal/bimetal nanoparticle-modified ZSM-5 zeolite nanocomposite catalysts and application on toluene methylation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Synthesis of Ag, Ni, Cu metallic and Ag/Ni, Ag/Cu bimetallic nanoparticles (NPs) was carried out by using metal nitrate salts as precursors via an easy and simple wet chemical method, and the synthesized NPs were loaded into the cavities of ZSM-5 zeolite framework. L-threonine was used as a capping agent and sodium borohydride as a reducing agent. Characterization of NPs and nanoparticle-modified ZSM-5 catalysts were realized with TEM, XRD, BET, FTIR, TGA, etc. The results obtained revealed that the structure of the zeolites was well preserved after the modification with metal NPs. According to the TEM and BET results, Ag-containing nanocomposite catalysts increased average pore diameter due to the small particle size of Ag NPs such as 2–6 nm well dispersed on the surface and partial blockage of the micropores of zeolite. The catalytic activity of the prepared catalysts was tested in toluene methylation at temperatures of 300 °C, 400 °C, 500 °C and different weight hourly space velocities (WHSV). At low temperatures, the modification of NPs in the ZSM-5 matrix increased toluene methylation and p-xylene selectivity. The highest p-xylene selectivity was found to be about 51% at 400 °C, while toluene conversion at this temperature was 61% using Ag NP-modified ZSM-5 due to the perfect stability NPs on the zeolite structure. The XRD, TGA and coke formation results of used catalysts show the reusability of these catalysts due to their thermal resistance, minimal coke formation and Ag NPs stability onto the zeolite framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Sharma, A. Kumar, Sh. Sharma, M. Naushad, R. P. Dwivedi, Z. A. ALOthman, G. T. Mola, J.King Saud. Univ., 31, 2

  2. A. Hatamifard, M. Nasrollahzadeh, S. M. Sajadi, Royal. Soc. Chem, 40 (2016)

  3. S. Cai, D. Wang, Z. Niu, Y. Li, Chin. J. Catal. 34, 11 (2013)

    Google Scholar 

  4. A. Shah, L. Rahman, R. Qureshi, Z. Rehman, Rev. Adv. Mater. Sci. 30, 2 (2012)

    Google Scholar 

  5. M. M. Khakzad Siuki, M.i Bakavoli, H. Eshghi, Applied Organometallic Chemistry, 33, 4 (2019)

  6. M. Blosi, S. Ortelli, A.L. Costa, M. Dondi, A. Lolli, S. Andreoli, P. Benito, S. Albonetti, Mat. 9, 7 (2016)

    Google Scholar 

  7. S. Mandal, D. Roy, R.V. Chaudhari, M. Sastry, Chem. Mater. 16, 19 (2004)

    Article  Google Scholar 

  8. T.W. Amen, O. Eljamal, A.M. Khalil, N. Matsunaga, J. Environ. Chem. Eng., 5 (2017)

  9. M.B. Gawande, A. Goswami, F. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 6 (2016)

    Article  Google Scholar 

  10. Y. Chen, Ch. Mou, B. Wan, Appl.Catal. B: Environ. 218, (2017)

  11. C. Huo, J. Ouyang, H. Yang, Sci. rep. 4, (2014)

  12. D. Xu, H. Lv, B. Liu, Frontiers. chem.6, (2018)

  13. Z. Lei, L. An, L. Dang, M. Zhao, J. Shi, S. Bai, Y. Cao, Micro. Meso. Mat. 119, (2009)

  14. D.R. Rolison, E. Hayes, W. Rudzinski, J. Phys. Chem. 93, 14 (1989)

    Article  Google Scholar 

  15. H. Esfandian, A. Samadi-Maybodi, B. Khoshandam, M. Parvini, J. Taiwan Inst. Chem. Eng. 75, (2017)

  16. Y. Wu, C. Li, J. Bai, J. Wang, Results. phys. 7, (2017)

  17. X. Zhang, T. Wang, X. Li, D. Wu, W. Chen, Journal of Coordination Chemistry 73 (2020)

  18. M. Conte, J. A. Lopez-Sanchez, Q. He, D. J. Morgan, Y. Ryabenkova, J. K. Bartley, A. F. Carley, S. H. Taylor, Ch. J. Kiely, K. Khalidc, G. J. Hutchings, Catal. Sci. Technol. 8 (2012)

  19. J.H. Ahn, R. Kolvenbach, S.S. Al-Khattaf, A. Jentys, J.A. Lercher, ACS Catal. 3, 5 (2013)

    Article  Google Scholar 

  20. X. Huang, R. Wang, X. Pan, C. Wang, M. Fan, Y. Zhu, Y. Wang, J. Peng, Green. Energy. Environ., (2020)

  21. F. Güleç, A. Özen, A. Niftaliyeva, A. Aydın, E. H. Şimşek, A. Karaduman, Res. Chem. Intermed. 44, (2018)

  22. J. Xu, Y. Guo, T. Huang, Y. Fan, Chem. Eng. J. 333, (2018)

  23. V. P. S. Caldeira, A. G. D. Santos, S. B. C. Pergher, S. B. C. Pergher, M. J. F. Costab, A. S. Araujo, Química Nova, 39(3), (2016)

  24. N.H. Kalwar, S.T.H. Sherazi, A.R. Khaskheli, K.R. Hallam, T.B. Scott, Z.A. Tagar, S.S. Hassan, R.A. Soomro. Appl. Catal. A: Gen. 453, (2013)

  25. K. Shameli, M. B. Ahmad, M. Zargar, W.M. Zin, W. Yunus, N. A. Ibrahim, Int. J. Nanomed. 6, (2011)

  26. N. H. Kalwar, S.T. H. Sherazi, A. R. Khaskheli, K. R. Hallam, T. B. Scott, Z. A. Tagar, S. S. Hassan, R. A. Soomro. Appl. Catal. A: Gen. 453, (2013)

  27. M. Ismail, M.I. Khan, Sh. B. Khan, M. A. Khan, K. Akhtar, A. M. Asiri, J. Mol. Liq. (2018)

  28. S. Adnan, N. H. Kalwar, M. W. Abbas, R. A. Soomro, M. A. Saand, F. R. Awan, A. Avci, E. Pehlivan, S. Bajwa, Applied Sciences, (2019)

  29. N. H. Kalwar, S. Tufail, H. Sherazi, M. I. Abro, Z. A. Tagar, S. S. Hassana, Y. Junejoa, M. I. Khattak, Applied Catalysis A: General 400, (2011)

  30. B. Khodashenas, H.R. Ghorbani Arab. J. Chem. 12, 8 (2019)

  31. B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z. Li, D. Ginger, Y. Xia, Nano Lett. 7, 4 (2007)

    Article  Google Scholar 

  32. A. Monga, R.A. Rather, B. Pal, Solar. Energy. Mater. Solar. Cells. 172, (2017)

  33. T. Ishizaki, K. Yatsugi, K. Akedo, Nanomaterials 6, 9 (2016)

    Article  Google Scholar 

  34. A.M. Meftah, E. Gharibshahi, N. Soltani, W. Yunus, E. Saion, Polymers 6, 9 (2014)

    Article  Google Scholar 

  35. H. Murthy, T. Desalegn, M. Kassa, B. Abebe and T. Assefa, J. Nanom. 2020, (2020)

  36. P. N. Njoki, A. E. Rhoadesa, J. I. Barnesa, Mater. Chem. Phys. 241, (2020)

  37. R. Chimentao, I. Kirm, F. Medina, X. Rodriguez, Y. Cesteros, P. Salagre, J. Sueiras, J. Fierro, Applied Sur. Sci. 252, 3 (2005)

    Article  Google Scholar 

  38. A. Jacas-Rodríguez, P. Rodríguez-Pascual, D. Franco-Manzano, L. Contreras, C. Polop, M. Rodriguez, Sci. and Eng. of Comp. Mat. 27, 1 (2020)

    Article  Google Scholar 

  39. R.S. Razavi, M.R. Loghman-Estarki, J. Cluster Sci. 23, 4 (2012)

    Google Scholar 

  40. J. Xu, Y. Guo, T. Huang, Y. Fan, Chem. Eng. J. 333, (2018)

  41. X.T. Cao, A.M. Showkat, L.G. Bach, W.-K. Lee, K.T. Lim, Mol. Crys. and Liq. Crys. 599, 1 (2014)

    Article  Google Scholar 

  42. D. Deng, Y. Cheng, Y. Jin, T. Qi, F. Xiao, J. Mater. Chem. 22, 45 (2012)

    Google Scholar 

  43. D.A. Svintsitskiy, A.P. Chupakhin, E.M. Slavinskaya, O.A. Stonkus, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Mol. Catal. 368– 369, (2012)

  44. S. Rostami, S.N. Azizi, S. Ghasemi, J Electroanalyt. Chem. 799, (2017)

  45. N.Y. Ul’yanova, O.Y. Golubeva, Glass Phys. Chem. 44, 5, (2018)

  46. Y. He, H. Lin, Y. Dong, B. Li, L. Wang, S. Chu, M. Luo, J. Liu, Chem. Eng. J. 347, (2018)

  47. X. Wang, N.M. Martin, J. Nilsson, S. Carlson, J. Gustafson, M. Skoglundh, P.-A. Carlsson, Catalysts 8, 11 (2018)

    Article  Google Scholar 

  48. M. Ismail, M. Khan, S.B. Khan, M.A. Khan, K. Akhtar, A.M. Asiri, J. Mol. Liq. 260, (2018)

  49. G. C. Beaton, A. J. Bottomley, D. Prezgot, A. Ianoul, K. G. Stamplecoskie, J. Mat. Chem. C. 31, (2020)

  50. M. Pérez-Page, J. Makel, K. Guan, S. Zhang, J. Tringe, R.H. Castro, P. Stroeve, Ceramics Inter. 42, 14 (2016)

    Article  Google Scholar 

  51. A. Niftaliyeva, F. Güleç, A. Karaduman, Res. Chem. Intermed. 46, (2020)

  52. F. Güleç, A.Niftaliyeva, A.Karaduman, Res. Chem. Intermed. 44, (2018)

  53. K. Varunkumar, R. Hussain, G. Hegde and A.S. Ethiraj, Mat Sci. in Semiconductor Processing 66, (2017)

  54. C. Boruban, E.N. Esenturk, Jour. of Mat. Res. 32, 19 (2017)

    Google Scholar 

  55. V.P. Caldeira, A.G. Santos, S.B. Pergher, M.J. Costa, A.S. Araujo, Quim. Nova 39, 3 (2016)

    Google Scholar 

  56. M.M. Rahman, B.M. Abu-Zied, A.M. Asiri, RSC Adv. 7, 34 (2017)

    Google Scholar 

  57. W. Wu, E. Weitz, Appl. Surface Sci. 14, (2014)

  58. F. Güleç, F. Sher, A. Karaduman, Pet. Sci. 16, (2018)

  59. T. Komatsu, J.H. Kim, T. Yashima, C. Song, J.M. Garce´s, Y. Sugi, Shape-Selective Catalysis, (ACS Press, Washington, DC, 2000), p. 410

  60. L. Jin, Y. Fang, H. Hu, Catal. Commun. 7, (2006)

  61. J.H. Kim, S. Namba, T. Yashima, 59, (1991)

  62. A. Mekki, A. Mokhtar, M. Hachemaoui, M. Beldjilali, M. fethia Meliani, H.H. Zahmani, S. Hacini, B. Boukoussa, Mic. and Mes. Mat. 310, (2021)

  63. A.K. Aboul-Gheit, A.A. Aboul-Enein, A.E. Awadallah, S.A. Ghoneim, Chin. J. of Cat. 31, 9–10 (2010)

    Google Scholar 

  64. C. Lee, S. Lee, W. Kim, R. Ryoo, Cat. Today 303, (2018)

  65. Y. Zhao, W. Tan, H. Wu, A. Zhang, M. Liu, G. Li, X. Wang, C. Song, X. Guo, Cat. Today 160, 1 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects of Selçuk University of Turkey [Grant Number 18201025].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysel Niftaliyeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niftaliyeva, A., Karaduman, A., Kalwar, N.H. et al. Synthesis of novel metal/bimetal nanoparticle-modified ZSM-5 zeolite nanocomposite catalysts and application on toluene methylation. Res Chem Intermed 48, 145–165 (2022). https://doi.org/10.1007/s11164-021-04597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04597-2

Keywords

Navigation