Skip to main content
Log in

A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.)

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Five hundred strains of rhizobacteria were isolated from the rhizosphere of the Central Highlands of Vietnam, where black pepper is cultivated. Of these, seven potent rhizobacteria were evaluated for anti-Phytophthora activity and 16S rRNA gene sequencing and phylogenic analysis classified. Evaluation of their antifungal activity was performed both in vitro and in vivo. The results showed that almost all potent rhizobacteria possessed anti-Phytophthora activity. The rhizobacteria strains displayed over 60% inhibition of Phytophthora during the in vitro test, and six rhizobacteria inhibited Phytophthora by 77.50–98.75% during the in vivo test. Enzymatic activities were measured to determine the antifungal mechanisms; these were identified as protease, chitinase, and β-glucanase. The effects of the rhizobacteria on plant growth and antifungal activity were also investigated. Under greenhouse conditions, black pepper seedlings treated with rhizobacteria were stronger and had lower rates of disease and fatality compared to the control group. The results from the in vitro test also showed that the anti-Phytophthora activity of the rhizobacteria was not dependent on enzyme activity, but rather on their chemical compounds. GC–MS and LC–MS profiles of the culture broth from the promising rhizobacteria strain RBDS.29 revealed seven potent antifungal compounds. The data suggest that Bacillus velezensis RB.DS29 is a promising rhizobacterium that promotes plant growth and the biocontrol of black pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Nakkeeran, K. Kavitha, G. Chandrasekar, P. Renukadevi, W.G.D. Fernando, Biocontrol Sci. Technol. 16, 403 (2006)

    Article  Google Scholar 

  2. F. Ahmad, I. Ahmad, M.S. Khan, Microbiol. Res. 163, 173 (2008)

    Article  CAS  PubMed  Google Scholar 

  3. P.C. Trivedi, in Bacteria in Agrobiology: Disease Management, ed. by D.K. Maheshwari (Springer, Berlin, 2013), p. 349

    Chapter  Google Scholar 

  4. K.N. Anith, K.M. Faseela, P.A. Archana, K.D. Prathapan, Symbiosis 55, 11 (2011)

    Article  Google Scholar 

  5. B. Lugtenberg, F. Kamilova, Annu. Rev. Microbiol. 63, 541 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. K.N. Anith, N.V. Radhakrishnan, T.P. Manomohandas, Microbiol. Res. 158, 91 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. S. Dastager, D. Kumaran, A. Pandey, Biology 6, 801 (2011)

    Google Scholar 

  8. S.S.K.P. Vurukonda, S. Vardharajula, M. Shrivastava, A. Skz, Microbiol. Res. 184, 13 (2016)

    Article  PubMed  Google Scholar 

  9. E. Ngumbi, J. Kloepper, Appl. Soil. Ecol. 105, 109 (2016)

    Article  Google Scholar 

  10. F.F. Da Mota, E.A. Gomes, L. Seldin, J. Microbiol. 56, 75 (2008)

    Google Scholar 

  11. L.J. White, V.S. Brözel, S. Subramanian, Bio-Protocol 5, 16 (2015)

    Article  Google Scholar 

  12. M.D. Tran, H. Sugimoto, D.A. Nguyen, T. Watanabe, K. Suzuki, Biosci. Biotechnol. Biochem. 82, 1 (2018)

    Article  CAS  Google Scholar 

  13. K. Tamura, G. Stecher, D. Peterson, A. Fillipski, S. Kumar, Mol. Biol. Evol. 30, 2725 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.A. Larkin, G. Blackshields, N.P. Brown, Bioinformatics 23, 2947 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. T. Imoto, K. Yagishita, Agric. Biol. Chem. 35, 1154 (1971)

    Article  CAS  Google Scholar 

  16. G.L. Miller, Anal. Chem. 31, 426 (1959)

    Article  CAS  Google Scholar 

  17. M.L. Anson, J. Gen. Physiol. 22, 79 (1938)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Dinu, A. Kumar, R. Aravind, S.J. Eapen, J. Spices Aromat. Crops 16, 1 (2007)

    Google Scholar 

  19. S.M. Lim, M.Y. Yoon, G.J. Choi, Y.H. Choi, K.S. Jang, T.S. Shin, H.W. Park, N.H. Yu, Y.H. Kim, J.C. Kim, Plant Pathol. J. 33, 488 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. R. Aravind, A. Kumar, S.J. Eapen, K.V. Ramana, Lett. Appl. Microbiol. 48, 58 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. N. Sheoran, A.V. Nadakkakath, V. Munjal, A. Kundu, K. Subaharan, A. Venugopal, S. Rajamma, S.J. Eapen, A. Kumar, Microbiol. Res. 173, 66 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. S.C. Toh, S. Lihan, A.S.A.H. Awang, Int. Food Res. J. 23, 2616 (2016)

    CAS  Google Scholar 

  23. Q. Jamal, Y.S. Lee, H.D. Jeon, K.Y. Kim, Plant Protect. Sci. 54, 129 (2018)

    Article  CAS  Google Scholar 

  24. M. Krober, B. Verwaaijen, D. Wibberg, A. Winkler, A. Pühler, A. Schlüter, J. Biotechnol. 231, 212 (2016)

    Article  PubMed  CAS  Google Scholar 

  25. B. Fan, J. Blom, H.P. Klenk, R. Borris, Front. Microbiol. 8, 22 (2017)

    PubMed  PubMed Central  Google Scholar 

  26. R. Scholz, J. Vater, A. Budiharjo, Z. Wang, Y. He, K. Dietel, T. Schwecke, S. Herfort, P. Lasch, R. Borriss, J. Bacteriol. 196, 1842 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. L.M. Wu, H.J. Wu, L. Chen, X. Yu, R. Borriss, X. Gao, Sci. Rep. 5, 12975 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Q. Gu, Y. Yang, Q. Yuan, G. Shi, L. Wu, Z. Lou, R. Huo, H. Wu, R. Borriss, X. Gao, Appl. Environ. Microbiol. 83, e01075 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. J.M. Palazzini, C.A. Dunlap, M.J. Bowman, S.N. Chulze, Microbiol. Res. 192, 30 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. X.C. Cai, C.H. Liu, B.T. Wang, Y.R. Xue, Microbiol. Res. 196, 89 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. C. Moon, D.J. Seo, Y.S. Song, S.H. Hong, S.H. Choi, W.J. Jung, Microb. Pathog. 113, 218 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. S.H. Hong, Y.S. Song, D.J. Seo, W.J. Jung, Microb. Pathog. 110, 159 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. C.T. Doan, N.T. Tran, M.T. Nguyen, V.B. Nguyen, A.D. Nguyen, S.L. Wang, Molecules 24, 691 (2017)

    Article  CAS  Google Scholar 

  34. C.L. Wang, J.W. Su, T.W. Liang, A.D. Nguyen, S.L. Wang, Res. Chem. Intermed. 40, 2237 (2014)

    Article  CAS  Google Scholar 

  35. C.L. Wang, C.J. Chen, A.D. Nguyen, T.W. Liang, Y.K. Twu, S.Y. Huang, S.L. Wang, Res. Chem. Intermed. 40, 2363 (2014)

    Article  CAS  Google Scholar 

  36. C.T. Doan, T.N. Tran, V.B. Nguyen, T.P.K. Vo, A.D. Nguyen, S.L. Wang, Int. J. Biol. Macromol. 131, 706 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. S.L. Wang, I.L. Shih, T.W. Liang, C.H. Wang, J. Agric. Food Chem. 50, 2241 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. T.N. Tran, C.T. Doan, V.B. Nguyen, A.D. Nguyen, S.L. Wang, Res. Chem. Intermed. 45, 727 (2018)

    Article  CAS  Google Scholar 

  39. V. Blattel, M. Larisika, P. Pfeiffer, C. Nowak, A. Eich, J. Eckelt, H. König, Appl. Environ. Microbiol. 77, 983 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Y. Chen, H. Xu, M. Zhou, Y. Wang, S. Wang, J. Zhang, PLoS ONE 10, e0134799 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. G.L. Backes, D.M. Neumann, B.S. Jursic, Bioorg. Med. Chem. 22, 4629 (2014)

    Article  CAS  PubMed  Google Scholar 

  42. Ł. Popiołek, A. Biernasiuk, A. Malm, J. Heterocycl. Chem. 53, 1589 (2015)

    Article  CAS  Google Scholar 

  43. A.S.O. Mohareb, I.E.A. Kherallah, M.E.I. Badawy, M.Z.M. Salem, H.A. Yousef, J. Appl. Biotechnol. Bioeng. 3, 331 (2017)

    Google Scholar 

  44. C.S.C. Kumar, L.Y. Then, T.S. Chia, S. Chandraju, Y.F. Win, S.F. Sulaiman, N.S. Hashim, K.L. Ooi, C.K. Quah, H.K. Fun, Molecules 20, 16566 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. T. Mouri, T. Yano, S. Kochi, T. Ando, M. Hori, J. Pestic. Sci. 30, 209 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are expressed to thank Ministry of Education and Training, Vietnam granted the Science and Technology program: Application of Biotechnology for sustainable black pepper production in the Central highland. B 2017–2019. This work was also supported in part by a grant from the Ministry of Science and Technology, Taiwan (MOST 106-2320-B-032-001-MY3).

Author information

Authors and Affiliations

Authors

Contributions

ADN conceived the study. ADN, HTT, and VBN designed and performed the study. AND and S-LW contributed the reagents/materials/analysis tools. QVH, CTD, VBN, and PKV analyzed the data. AND and S-LW wrote the paper.

Corresponding authors

Correspondence to San-Lang Wang or Anh Dzung Nguyen.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trinh, T.H.T., Wang, SL., Nguyen, V.B. et al. A potent antifungal rhizobacteria Bacillus velezensis RB.DS29 isolated from black pepper (Piper nigrum L.). Res Chem Intermed 45, 5309–5323 (2019). https://doi.org/10.1007/s11164-019-03971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03971-5

Keywords

Navigation