Skip to main content
Log in

Polymeric microsphere-loaded palladium-iminodiacetic acid complex as an efficient and easily recycled catalyst for Suzuki reaction in ionic liquid

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Core-crosslinked shelled-core microspheres of poly(styrene-co-methyl acrylic acid) (PS-co-PMAA), with cores rich in PS and the shell rich in PMAA, were synthesized by one-stage soap-free emulsion polymerization. A palladium (Pd)-iminodiacetic acid (IDA) complex catalyst is loaded on the shell of the PS-co-PMAA microsphere, which results in the advantage of high dispersion degree and, therefore, high activity. The resultant polymeric microspheres catalyst systems are then applied to catalyze the Suzuki reaction of aryl halides with phenylboronic acid in an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). Our catalyst systems are proved to be efficient and active for both aryl bromides and aryl iodides. Compared to traditional Pd(Ph3)4 catalyst, the PS-co-PMAA-IDA-Pd catalyst used here affords higher yield of Suzuki reaction at even lower catalyst concentration. In addition, our polymeric-microsphere based catalytic system can be easily recycled at least four times with high activity in ionic [bmim][BF4] liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. N. Miyaura, T. Yanagigand, A. Suzuki, Synth. Commun. 11, 513 (1981)

    Article  CAS  Google Scholar 

  2. A. Suzuki, J. Organomet. Chem. 576, 147 (1999)

    Article  CAS  Google Scholar 

  3. J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 102, 1359 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. L. Yin, J. Liebscher, Chem. Rev. 107, 133 (2007)

    Article  CAS  Google Scholar 

  5. Z.C. Xiong, N.D. Wang, M. Dai, A. Li, J.H. Chen, Z. Yang, Org. Lett. 6, 3337 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. L.L. Zhang, Y.L. Guo, A. Iqbal, B. Li, M. Deng, D.Y. Gong, W.S. Liu, W.W. Qin, J. Nanopart. Res. 19, 150 (2017)

    Article  CAS  Google Scholar 

  7. R.B. Bedford, S.J.C. Cazin, S.L. Hazelwood, Angew. Chem. Int. Ed. 114, 4294 (2002)

    Article  Google Scholar 

  8. J.P. Stambuli, R. Kuwano, J.F. Hartwig, Angew. Chem. Int. Ed. 41, 4746 (2002)

    Article  CAS  Google Scholar 

  9. R.B. DeVasher, L.R. Moore, K.H. Shaughnessy, J. Org. Chem. 69, 7919 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. J.H. Kirchhoff, C. Dai, G.C. Fu, Angew. Chem. Int. Ed. 114, 2025 (2002)

    Article  Google Scholar 

  11. K.N. Sharma, N. Satrawala, R.K. Joshi, Eur. J. Inorg. Chem. 16, 1743 (2018)

    Article  CAS  Google Scholar 

  12. M. Ibrahim, I. Malik, W. Mansour, M. Sharif, M. Fettouhi, B.E. Ali, J. Organomet. Chem. 859, 44 (2018)

    Article  CAS  Google Scholar 

  13. O. Navarro, R.A. Kelly, S.P. Nolan, J. Am. Chem. Soc. 125, 16194 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. O. Bárta, I. Císařová, P. Štěpnička, Eur. J. Inorg. Chem. 2, 489 (2016)

    Google Scholar 

  15. R. Maity, A. Verma, M. van der Meer, S. Hohloch, B. Sarkar, Eur. J. Inorg. Chem. 1, 111 (2016)

    Article  CAS  Google Scholar 

  16. H.Y. Liu, X.S. Li, F. Liu, Y. Tan, Y.Y. Jiang, J. Organomet. Chem. 794, 27 (2015)

    Article  CAS  Google Scholar 

  17. A. Avila-Sorrosa, H.A. Jiménez-Vázquez, A. Reyes-Arellanoa, J.R. Pioquinto-Mendoza, R.A. Toscano, L. González-Sebastiánb, D. Morales-Morales, J. Organomet. Chem. 819, 69 (2016)

    Article  CAS  Google Scholar 

  18. M. Khajehzadeh, M. Moghadam, J. Organomet. Chem. 863, 60 (2018)

    Article  CAS  Google Scholar 

  19. H.H. Zhang, J. Han, F. Tian, Q.Z. Chen, C.Z. Wang, H. Jin, G.Y. Bai, Res. Chem. Intermed. 41, 6731 (2014)

    Article  CAS  Google Scholar 

  20. S. Borah, S. Mishra, L. Cardenas, G. Nayanmoni, J. Inorg. Chem. 6, 751 (2018)

    Google Scholar 

  21. Y.L. Huang, Q. Wei, Y.Y. Wang, L.Y. Dai, Carbon 136, 150 (2018)

    Article  CAS  Google Scholar 

  22. S. RoyKula, K.K. Senapati, P. Phukan, Res. Chem. Intermed. 41, 5753 (2014)

    Google Scholar 

  23. C. Biglione, A.L. Cappelletti, M.C. Strumia, S.E. MartínPaula, M. Uberman, J. Nanopart. Res. 20, 127 (2018)

    Article  CAS  Google Scholar 

  24. J. Chen, J. Zhang, D.J. Zhu, T. Li, J. Porous Mater. 24, 847 (2017)

    Article  CAS  Google Scholar 

  25. X. Liu, X.H. Zhao, M. Lu, J. Organomet. Chem. 768, 23 (2014)

    Article  CAS  Google Scholar 

  26. B.H. Zhang, Y.G. Xue, A.N. Jiang, Z.M. Xue, Z.H. Li, J.C. Hao, A.C.S. Appl, Mater. Interfaces 9, 7217 (2017)

    Article  CAS  Google Scholar 

  27. Y.C. Hu, N. Li, G.Y. Li, A.Q. Wang, Y. Cong, X.D. Wang, T. Zhang, ACS Catal. 7, 2576 (2017)

    Article  CAS  Google Scholar 

  28. T. Itoh, Chem. Rev. 117, 10567 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. A. Mondal, A. Das, B. Adhikary, D.K. Mukherjee, J. Nanopart. Res. 16, 2366 (2014)

    Article  CAS  Google Scholar 

  30. P.W. Zheng, W.Q. Zhang, J. Catal. 250, 324 (2007)

    Article  CAS  Google Scholar 

  31. X.W. Jiang, G.W. Wei, X. Zhang, W.Q. Zhang, P.W. Zheng, F. Wen, L.Q. Shi, J. Mol. Catal. A: Chem. 277, 102 (2007)

    Article  CAS  Google Scholar 

  32. X.W. Jiang, Y. Wang, W.Q. Zhang, P.W. Zheng, L.Q. Shi, Macromol. Rapid Commun. 27, 1833 (2006)

    Article  CAS  Google Scholar 

  33. S.T. Handy, X. Zhang, Org. Lett. 3, 233 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. J.Z. Zhang, W.Q. Zhang, Y. Wang, M.C. Zhang, Adv. Synth. Catal. 350, 2065 (2008)

    Article  CAS  Google Scholar 

  35. C.J. Mathews, P.J. Smith, T. Welton, Chem. Commum. 1249 (2000)

  36. M. Pesavento, R. Biesuz, M. Gallorini, A. Profumo, Anal. Chem. 65, 2522 (1993)

    Article  CAS  Google Scholar 

  37. C. Pan, M. Liu, L. Zhang, H. Wu, J. Ding, J. Cheng, Catal. Commun. 9, 508 (2008)

    Article  CAS  Google Scholar 

  38. A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.-M. Basset, V. Polshottiwar, Chem. Soc. Rev. 40, 5181 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21706002), Natural Science Foundation of Anhui Province (1808085QB53), and the Research Fund of School of Chemistry and Chemical Engineering (Anhui University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingshuai Chen or Qiuyu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, J., Zhang, Q. et al. Polymeric microsphere-loaded palladium-iminodiacetic acid complex as an efficient and easily recycled catalyst for Suzuki reaction in ionic liquid. Res Chem Intermed 45, 2503–2514 (2019). https://doi.org/10.1007/s11164-019-03738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03738-y

Keywords

Navigation