Skip to main content

Advertisement

Log in

Phase transition and crystal growth of a titania layer on a titanium metal plate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A titanium metal surface was heated with an alkali metal chloride in order to produce a phase transition from amorphous titania to crystalline titania on the surface. The crystalline phase was identified by XRD and Raman spectroscopic analyses. The anatase-type titania phase was formed by heating the surface with KCl or CsCl at 500–550 °C for 3 h. The heating at a higher temperature caused a transition to the rutile-type titania. The amorphous titania layer on the surface of the titanium metal was reduced with assistance of the alkali metal chloride and re-oxidized to transform into the metastable anatase-type titania phase under certain conditions. The surface layer having the anatase titania phase exhibited the faster photocatalytic degradation of acetaldehyde, which was demonstrated by gas chromatography and FTIR spectroscopic measurement. Furthermore, the titanium metal coated with KCl and subsequent titanium alkoxide sol was heated in order to form a thicker titania film. The structural characterization of the film surface was conducted by XRD, Raman spectroscopy, and XPS analyses. Larger anatase-type titania crystallites were clearly formed on the titanium metal surface, to which they strongly adhered by heating at 500–550 °C for 30 min. The deposited KCl promoted the crystallization of the original amorphous titania and coated titania gel layers. The particle size of the titania film was also confirmed by SEM and TEM observations. The surface layer having the thicker anatase titania phase exhibited the faster photocatalytic degradation of acetaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000)

    Article  CAS  Google Scholar 

  2. D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C: Photochem. Rev. 6, 186 (2005)

    Article  CAS  Google Scholar 

  3. H. Nishikiori, K. Morita, Y. Shibuya, K. Tagashira, Chem. Lett. 44, 639 (2015)

    Article  CAS  Google Scholar 

  4. H. Nishikiori, S. Matsunaga, N. Furuichi, H. Takayama, K. Morita, K. Teshima, H. Yamashita, Appl. Clay Sci. 146, 43 (2017)

    Article  CAS  Google Scholar 

  5. M. Kaneko, J. Nemoto, H. Ueno, N. Gokan, K. Ohnuki, M. Horikawa, R. Saito, T. Shibata, Electrochem. Commun. 8, 336 (2006)

    Article  CAS  Google Scholar 

  6. H. Ueno, J. Nemoto, K. Ohnuki, M. Horikawa, M. Hoshino, M. Kaneko, J. Appl. Electrochem. 39, 1897 (2009)

    Article  CAS  Google Scholar 

  7. M. Antoniadou, P. Lianos, Catal. Today 144, 166 (2009)

    Article  CAS  Google Scholar 

  8. M. Antoniadou, D.I. Kondarides, D. Labou, Catal. Lett. 129, 344 (2009)

    Article  CAS  Google Scholar 

  9. M. Antoniadou, P. Lianos, Appl. Catal. B: Environ. 99, 307 (2010)

    Article  CAS  Google Scholar 

  10. M. Antoniadou, D.I. Kondarides, D. Labou, S. Neophytides, P. Lianos, Solar Energy Mater. Solar cells 94, 592 (2010)

    Article  CAS  Google Scholar 

  11. M.B. Tahir, G. Nabi, M. Rafique, N.R. Khalid, Int. J. Environ. Sci. Technol. 14, 2519 (2017)

    Article  CAS  Google Scholar 

  12. M.B. Tahir, G. Nabi, A. Hassan, T. Iqbal, H. Kiran, A. Majid, J. Inorg. Organomet. Polym. 28, 738 (2018)

    Article  CAS  Google Scholar 

  13. H. Tsuchiya, J.M. Macak, L. Müller, J. Kunze, F. Müller, P. Greil, S. Virtanen, P. Schmuki, J. Biomedical Mater. Res. A 77, 534 (2006)

    Article  Google Scholar 

  14. S. Fujibayashi, T. Nakamura, S. Nishiguchi, J. Tamura, M. Uchida, H.M. Kim, T. Kokubo, J. Biomedical Mater. Res. 56, 562 (2001)

    Article  CAS  Google Scholar 

  15. F.D. Hardcastle, H. Ishihara, R. Sharma, A.S. Biris, J. Mater. Chem. 21, 633 (2011)

    Article  Google Scholar 

  16. R.D. Shannon, J.A. Pask, J. Am. Ceram. Soc. 48, 391 (1965)

    Article  CAS  Google Scholar 

  17. H. Nishikiori, M. Takei, K. Oki, S. Takano, N. Tanaka, T. Fujii, Appl. Catal. B: Environ. 127, 227 (2012)

    Article  CAS  Google Scholar 

  18. H. Nishikiori, T. Akaozeki, T. Hizumi, N. Zettsu, K. Teshima, Chem. Lett. 45, 729 (2016)

    Article  CAS  Google Scholar 

  19. B. Roy, P.A. Fuierer, J. Am. Ceram. Soc. 93, 436 (2010)

    Article  CAS  Google Scholar 

  20. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855 (2011)

    Article  CAS  Google Scholar 

  21. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  CAS  Google Scholar 

  22. F. Xiao, G.Q. Jiang, J.Y. Chen, Z.L. Jiang, X.Z. Liu, A. Osaka, X.C. Ma, J. Mater. Sci. 53, 285 (2018)

    Article  CAS  Google Scholar 

  23. X. Lang, D. Wang, S. Tang, J. Zhu, C. Guo, J. Power Sources 271, 354 (2014)

    Article  CAS  Google Scholar 

  24. X. Lang, D. Wang, J. Zhu, J. Power Sources 272, 176 (2014)

    Article  CAS  Google Scholar 

  25. V. Jokanović, M. Vilotijević, B. Jokanović, M. Jenko, I. Anžel, D. Stamenković, V. Lazic, R. Rudolf, Corrosion Sci. 82, 180 (2014)

    Article  Google Scholar 

  26. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  Google Scholar 

  27. H. Berber, H. Tang, F. Lévy, J. Crystal Growth 130, 108 (1993)

    Article  Google Scholar 

  28. U. Balachandran, N.G. Eror, J. Solid State Chem. 42, 276 (1982)

    Article  CAS  Google Scholar 

  29. R.F. de Farias, J. Colloid Interface Sci. 239, 584 (2001)

    Article  Google Scholar 

  30. T.H. Okabe, T. Oda, Y. Mitsuda, J. Alloys Compounds 364, 156 (2004)

    Article  CAS  Google Scholar 

  31. K. Teshima, S.H. Lee, S. Murakoshi, S. Suzuki, M. Kiyohara, K. Yubuta, T. Shishido, M. Endo, S. Oishi, Cryst. Growth Des. 10, 2533 (2010)

    Article  CAS  Google Scholar 

  32. J. Yu, X. Zhao, Q. Zhao, Mater. Chem. Phys. 69, 25 (2001)

    Article  CAS  Google Scholar 

  33. H. Nishikiori, T. Sato, S. Kubota, N. Tanaka, Y. Shimizu, T. Fujii, Res. Chem. Intermed. 38, 595 (2012)

    Article  CAS  Google Scholar 

  34. H. Nishikiori, R.A. Setiawan, K. Miyamoto, G. Sukmono, Y. Uesugi, K. Teshima, T. Fujii, RSC Adv. 2, 4258 (2012)

    Article  CAS  Google Scholar 

  35. G. Gusmano, G. Montesperelli, P. Nunziante, E. Traversa, A. Montenero, M. Braghini, G. Mattogno, A. Bearzotti, J. Ceram. Soc. Jpn. 101, 1095 (1993)

    Article  CAS  Google Scholar 

  36. J. Trimboli, M. Mottern, H. Verweij, P.K. Dutta, J. Phys. Chem. B 110, 5647 (2006)

    Article  CAS  Google Scholar 

  37. B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Appl. Surf. Sci. 254, 2569 (2008)

    Article  CAS  Google Scholar 

  38. B. Ohtani, O.O.P. Mahaney, F. Amano, N. Murakami, R. Abe, J. Adv. Oxidation Technol. 13, 247 (2010)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers 15K05472 and JP16KK0110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromasa Nishikiori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishikiori, H., Hizumi, T., Kawamoto, K. et al. Phase transition and crystal growth of a titania layer on a titanium metal plate. Res Chem Intermed 44, 7539–7555 (2018). https://doi.org/10.1007/s11164-018-3572-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3572-0

Keywords

Navigation