Skip to main content
Log in

Photoinduced one-pot synthesis of hydroxamic acids from aldehydes through in-situ generated silver nanoclusters

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Hydroxamic acids have attracted significant attention due to their widespread use in applied chemistry. In this report, a modified Angeli–Rimini method has been achieved via the visible light-mediated catalytic transformation of a variety of heterocyclic, aromatic and aliphatic aldehydes 1a–j to their corresponding hydroxamic acids 2a–j in 81–93% yield. The unique ability of vitamin K3 as a photoredox catalyst to expedite the development of completely new reaction mechanisms and to enable the construction of challenging carbon–nitrogen bonds has been investigated. It is shown for the first time that the vitamin K3 and aldehyde are largely responsible for rapid in situ reduction of Ag+ ions to catalytic photoluminescent Ag nanoclusters that possess a bandgap energy of 2.87 eV and are less than 2 nm in size. A mechanism for this reaction has been proposed and is supported by UV–Vis, TEM, ESI/MS, FT-IR, 1H NMR and 13C NMR analyses. The investigated method utilizes readily available reagents and produces the hydroxamic acids in high yields without the formation of side products, making it simple, practical and cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. A. Porcheddu, G. Giacomelli, J. Org. Chem. 71, 7057 (2006)

    Article  CAS  Google Scholar 

  2. K.S. Jain, K.A.A. Kumar, S.B. Bharate, R.A. Vishwakarm, Org. Biomol. Chem. 12, 6465 (2014)

    Article  CAS  Google Scholar 

  3. F.T. Wong, P.K. Patra, J. Seayad, Y. Zhang, J.Y. Ying, Org. Lett. 10, 2333 (2008)

    Article  CAS  Google Scholar 

  4. S.L. Yedage, B.M. Bhanage, Synthesis 47, 526 (2015)

    CAS  Google Scholar 

  5. G.N. Papadopoulos, C.G. Kokotos, Chem. Eur. J. 22, 6964 (2016)

    Article  CAS  Google Scholar 

  6. J.C.S. Woo, E. Fenster, G.R. Dake, J. Org. Chem. 69, 8984 (2004)

    Article  CAS  Google Scholar 

  7. A. Gissot, A. Volonterio, M. Zanda, J. Org. Chem. 70, 6925 (2005)

    Article  CAS  Google Scholar 

  8. J.R. Martinelli, D.M.M. Freckmann, S.L. Buchwald, Org. Lett. 8, 4843 (2006)

    Article  CAS  Google Scholar 

  9. K. Thalluri, S.R. Manne, D. Dev, B. Mandal, J. Org. Chem. 79, 3765 (2014)

    Article  CAS  Google Scholar 

  10. B. Vasantha, H.P. Hemantha, V.V. Sureshbabu, Synthesis 2010, 2990 (2010)

    Article  Google Scholar 

  11. E.M. Muri, M.J. Nieto, R.D. Sindelar, J.S. Williamson, Curr. Med. Chem. 9, 1631 (2002)

    Article  CAS  Google Scholar 

  12. A. Yekkour, A. Meklat, C. Bijani, O. Toumatia, R. Errakhi, A. Lebrihi, F. Mathieu, A. Zitouni, N. Sabaou, Lett. Appl Microbiol. 60, 589 (2015)

    Article  CAS  Google Scholar 

  13. N. Türkel, J. Chem. Eng. Data 56, 2337 (2011)

    Article  Google Scholar 

  14. M. Harty, S.L. Bearne, J. Therm. Anal. Calorim. 123, 2573 (2016)

    Article  CAS  Google Scholar 

  15. H. Chen, C. Liu, M. Wang, C. Zhang, N. Luo, Y. Wang, H. Abroshan, G. Li, F. Wang, ACS Catal. 7, 3632 (2017)

    Article  CAS  Google Scholar 

  16. M. Miyauchi, H. Irie, M. Liu, X. Qiu, H. Yu, K. Sunada, K. Hashimoto, J. Phys. Chem. Lett. 7, 75 (2016)

    Article  CAS  Google Scholar 

  17. M.A. Koklioti, T. Skaltsas, Y. Sato, K. Suenaga, A. Stergiou, N. Tagmatarchis, Nanoscale 9, 9685 (2017)

    Article  CAS  Google Scholar 

  18. J.C. Ahern, S. Kanan, H.H. Patterson, Comments Inorg. Chem. 35, 59 (2015)

    Article  CAS  Google Scholar 

  19. H. Zhu, N. Goswami, Q. Yao, T. Chen, Y. Liu, Q. Xu, D. Chen, J. Lu, J. Xie, J. Mater. Chem. A 6, 1102 (2018)

    Article  CAS  Google Scholar 

  20. S. Abbet, A. Sanchez, U. Heiz, W.D. Schneider, A.M. Ferrari, G. Pacchioni, N. Rösch, J. Am. Chem. Soc. 122, 3453 (2000)

    Article  CAS  Google Scholar 

  21. Y. Liu, H. Tsunoyama, T.C. Akita, S. Xie, T.C. Tsukuda, ACS Catal. 1, 2 (2011)

    Article  CAS  Google Scholar 

  22. F.F. Schweinberger, M.J. Berr, M. Döblinger, C. Wolff, K.E. Sanwald, A.S. Crampton, C.J. Ridge, F. Jäcke, J. Feldmann, M. Tschurl, U. Heiz, J. Am. Chem. Soc. 135, 13262 (2013)

    Article  CAS  Google Scholar 

  23. U. Heiz, A. Sanchez, S. Abbet, W.D. Schneider, Chem. Phys. 262, 189 (2000)

    Article  CAS  Google Scholar 

  24. A.S. Wörz, K. Judai, S. Abbet, U. Heiz, J. Am. Chem. Soc. 125, 7964 (2003)

    Article  Google Scholar 

  25. Y. Attia, M. Samer, Renew. Sustain. Energy Rev. 79, 878 (2017)

    Article  CAS  Google Scholar 

  26. S. Yin, Z. Wang, E.R. Bernstein, Phys. Chem. Chem. Phys. 15, 4699 (2013)

    Article  CAS  Google Scholar 

  27. Y. Attia, D. Buceta, C. Blanco-Varela, M. Mohamed, G. Barone, M.A. López-Quintela, J. Am. Chem. Soc. 136, 1182 (2014)

    Article  CAS  Google Scholar 

  28. Y. Attia, D. Buceta, F. Requejo, L. Giovanetti, M.A. López-Quintela, Nanoscale 7, 11273 (2015)

    Article  CAS  Google Scholar 

  29. Y. Lu, W. Chen, Chem. Soc. Rev. 41, 3594 (2012)

    Article  CAS  Google Scholar 

  30. B. Adhikari, A. Banerjee, Chem. Mater. 22, 4364 (2010)

    Article  CAS  Google Scholar 

  31. N. Cathcart, P. Mistry, C. Makra, B. Pietrobon, N. Coombs, M. Jelokhani-Niaraki, V. Kitaev, Langmuir 25, 5840 (2009)

    Article  CAS  Google Scholar 

  32. S. Dai, X. Zhang, T. Li, Z. Du, H. Dang, Appl. Surf. Sci. 249, 346 (2005)

    Article  CAS  Google Scholar 

  33. W. Guo, J. Yuan, Q. Dong, E. Wang, J. Am. Chem. Soc. 132, 932 (2010)

    Article  CAS  Google Scholar 

  34. H.C. Yeh, J. Sharma, J.J. Han, J.S. Martinez, J.H. Werner, Nano Lett. 10, 3106 (2010)

    Article  CAS  Google Scholar 

  35. C.I. Richards, S. Choi, J.C. Hsiang, Y. Antoku, T. Vosch, A. Bongiorno, Y.L. Tzeng, R.M. Dickson, J. Am. Chem. Soc. 130, 5038 (2008)

    Article  CAS  Google Scholar 

  36. X.L. Guevel, B. Hötzer, G. Jung, K. Hollemeyer, V. Trouillet, M. Schneider, J. Phys. Chem. C 115, 10955 (2011)

    Article  Google Scholar 

  37. J. Xie, Y. Zheng, J.Y. Ying, J. Am. Chem. Soc. 131, 888 (2009)

    Article  CAS  Google Scholar 

  38. A. Mathew, P.R. Sajanlal, T. Pradeep, J. Mater. Chem. 21, 11205 (2011)

    Article  CAS  Google Scholar 

  39. N.K. Makhmudova, ZCh. Kadyrova, E.A. Del’yaridi, KhT Sharipov, Russ. J. Org. Chem. 37, 866 (2001)

    Article  CAS  Google Scholar 

  40. O. Kreye, S. Wald, M.A.R. Meier, Adv. Synth. Catal. 355, 81 (2013)

    Article  CAS  Google Scholar 

  41. G. Dettori, S. Gaspa, A. Porcheddu, L. De Luca, Adv. Synth. Catal. 356, 2709 (2014)

    Article  CAS  Google Scholar 

  42. A.R. Katritzky, N. Kirichenko, B.V. Rogovoy, Synthesis 2003, 2777 (2003)

    Article  Google Scholar 

  43. J. Schlupmann, F. Lendzian, M. Plato, K. Mobius, J. Chem. Soc. Faraday Trans. 89, 2853 (1993)

    Article  Google Scholar 

  44. N. Durán, P.D. Marcato, O.L. Alves, G.D. Souza, E. Esposito, J. Nanobiotech. 3, 8 (2005)

    Article  Google Scholar 

  45. A. Król-Gracz, P. Nowak, E. Michalak, A. Dyonizy, Acta Phys. Pol. A 121, 196 (2012)

    Article  Google Scholar 

  46. S.E. Selva, D. Martinez, M.J. Buceta, M.C. Rodriguez-Vazquez, M.A. Blanco, G.Egea Lopez-Quintela, J. Am. Chem. Soc. 132, 6947 (2010)

    Article  CAS  Google Scholar 

  47. K. Jyoti, M. Baunthiyal, A. Singh, J. Radiat. Res. Appl. Sci. 9, 217 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors are grateful to the National Research Center (Egypt), National Institute of Laser Enhanced Sciences, Cairo University (Egypt) and NORD University (Norway) for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yasser M. A. Mohamed or Yasser A. Attia.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, Y.M.A., Attia, Y.A. & Solum, E.J. Photoinduced one-pot synthesis of hydroxamic acids from aldehydes through in-situ generated silver nanoclusters. Res Chem Intermed 44, 7173–7186 (2018). https://doi.org/10.1007/s11164-018-3549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3549-z

Keywords

Navigation