Skip to main content
Log in

A kinetic and statistical model for carbon deposition on Ni/Al2O3 catalyst in the steam methane reforming

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

An experimental and statistical study was performed for the carbon deposition on Ni/Al2O3 catalyst in the methane steam reforming process. Carbon deposition plays a significant role in the catalyst deactivation. Thus, applying a statistical model and a kinetic rate for carbon deposition is so valuable. The central composite design (CCD) was used for the modeling of the carbon deposition process. The statistical analysis of model, as obtained from the CCD method, revealed that a polynomial equation with the F-value = 456.94, the p value < 0.0001, and the R 2 = 0.9919, could appropriately predict the experimental data. Based on the established models, an increase in steam to methane ratio (S/C) caused carbon deposition sharply decreased. As pressure increased from 1.81 to 4.19 bar, carbon deposition slightly increased. When temperature varied from 540 to 600 °C, whisker carbon was produced and its activity increased with temperature. As temperature exceeded 600 °C, carbon deposition slightly increased that can be attributed to formation of pyrolytic carbon. The minimum of carbon deposition was occurred in low pressure, high S/C and at 600 °C. So, the kinetic rate of carbon deposition was suggested in these conditions using generalized reduced gradient nonlinear method. The proposed kinetic rate of methane decomposition reaction can accurately predict the experimental rate data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Weight hourly specific velocity.

Abbreviations

Fi :

Molar flow of species i (mol/min)

N:

Number of required tests

K:

Number of factors

N0 :

Number of same tests

T:

Temperature (°C)

P:

Pressure (bar)

S/C :

Steam to methane ratio

rc :

Rate of methane decomposition reaction (g carbon/(g catalyst min))

References

  1. R.B. Gupta, Hydrogen Fuel: Production, Transport, and Storage (Taylor and Francis Group, New York, 2008)

    Book  Google Scholar 

  2. K. Selvarajah, N.H.H. Phuc, B. Abdullah, F. Alenazey, D.-V.N. Vo, Res. Chem. Intermed. 42, 1 (2016)

    Article  Google Scholar 

  3. K. Liu, C. Song, V. Subramani, Hydrogen and Syngas Production and Purification Technologies (Wiley, New York, 2010)

    Google Scholar 

  4. S.-C. Baek, K.-W. Jun, Y.-J. Lee, J.D. Kim, K.-Y. Lee, Res. Chem. Intermed. 38, 1225–1236 (2012)

    Article  CAS  Google Scholar 

  5. J. Sehested, Catal. Today 111, 200–209 (2006)

    Article  Google Scholar 

  6. A. Serrano-Lotina, L. Daza, Int. J. Hydrogen Energy 39, 4089–4094 (2014)

    Article  CAS  Google Scholar 

  7. M. Halabi, M. De Croon, J. Van Der Schaaf, P. Cobden, J. Schouten, Appl. Catal. A 389, 68–79 (2010)

    Article  CAS  Google Scholar 

  8. Y. Chen, Y. Zhao, J. Zhang, C. Zheng, Sci. China. Ser E. 54, 2999–3008 (2011)

    Article  CAS  Google Scholar 

  9. J. Xu, G.F. Froment, AlChE J. 35, 88–96 (1989)

    Article  CAS  Google Scholar 

  10. K. Hou, R. Hughes, Chem. Eng. J. 82, 311–328 (2001)

    Article  CAS  Google Scholar 

  11. J.D.S. Lisboa, D.C. Santos, F.B. Passos, F.B. Noronha, Catal. Today 101, 15–21 (2005)

    Article  CAS  Google Scholar 

  12. C.H. Bartholomew, Cat. Rev. Sci. Eng. 24, 67–112 (1982)

    Article  CAS  Google Scholar 

  13. C. Wu, R. Liu, Int. J. Hydrogen Energy 35, 7386–7398 (2010)

    Article  CAS  Google Scholar 

  14. M.K. Nikoo, N. Amin, Fuel Process. Technol. 92, 678–691 (2011)

    Article  CAS  Google Scholar 

  15. X. Guo, Y. Sun, Y. Yu, X. Zhu, C.-J. Liu, Catal. Commun. 19, 61–65 (2012)

    Article  CAS  Google Scholar 

  16. A.L. Alberton, M.M. Souza, M. Schmal, Catal. Today 123, 257–264 (2007)

    Article  CAS  Google Scholar 

  17. G. Trunfio, F. Arena, Catalysts 4, 196–214 (2014)

    Article  Google Scholar 

  18. K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Appl. Catal. 314, 9–22 (2006)

    Article  CAS  Google Scholar 

  19. B. Bej, N.C. Pradhan, S. Neogi, Catal. Today 207, 28–35 (2013)

    Article  CAS  Google Scholar 

  20. T. Borowiecki, Appl. Catal. 4, 223–231 (1982)

    Article  CAS  Google Scholar 

  21. M.A. Nieva, M.M. Villaverde, A. Monzón, T.F. Garetto, A.J. Marchi, Chem. Eng. J. 235, 1385–8947 (2014)

    Article  Google Scholar 

  22. S.D. Angeli, F.G. Pilitsis, A.A. Lemonidou, Catal. Today 242, 1979–1997 (2015)

    Article  Google Scholar 

  23. G.E. Box, K. Wilson, In Breakthroughs in Statistics (Springer, New York, 1992)

    Google Scholar 

  24. F. Donyagard, A.R. Zarei, H. Rezaei-Vahidian, Res. Chem. Intermed. (2017). doi:10.1007/s11164-017-2902-y

    Google Scholar 

  25. J. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Adv. Catal. 47, 65–139 (2002)

    CAS  Google Scholar 

  26. Y. Matsumura, T. Nakamori, Appl. Catal. 258, 107–114 (2004)

    Article  CAS  Google Scholar 

  27. R. Pannerselvam, Design and Analysis of Experiments (PHI Learning Pvt. Ltd., New Delhi, 2012)

    Google Scholar 

  28. S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, Int. J. Hydrogen Energy 39, 1979–1997 (2014)

    Article  CAS  Google Scholar 

  29. J.R. Rostrup-Nielsen, Catalystic Steam Reforming (Springer, Denmark, 1984)

    Google Scholar 

  30. J.R. Rostrup-Nielsen, J. Catal. 33, 184–201 (1974)

    Article  Google Scholar 

  31. L.S. Lasdon, A.D. Waren, A. Jain, M. Ratner, A.C.M. Trans, Math. Softw. 4, 34–50 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Saberimoghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberimoghaddam, A., Nozari, A. A kinetic and statistical model for carbon deposition on Ni/Al2O3 catalyst in the steam methane reforming. Res Chem Intermed 44, 201–215 (2018). https://doi.org/10.1007/s11164-017-3098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3098-x

Keywords

Navigation