Skip to main content
Log in

Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This paper attempts to explore the synergism of hybrid advanced oxidation processes, which are sono-photo-catalysis and sono-photo-activated two oxidation agents, viz. hydrogen peroxide and potassium persulfate individually using cobalt doped ferric oxide (Co-Fe2O3) as a photocatalyst, which can be excited and promote an electron to initiate the reactions. Degradation of three dye types, viz. eosin B, rhodamine B, and methylene blue have been used as a reaction model. The results revealed the binary techniques, sono-photo-catalysis to degrade eosin B and methylene blue have an antagonistic effect with negative synergy. On the contrary, rhodamine B has a positive synergy value, hence, indicating a synergistic effect. The ternary technique, which was coupling sono-photo-catalysis with the optimum amount of K2S2O8 raised the mineralization and showed a significant positive synergism effect for K2S2O8 (39.89%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Watanabe et al., Photodegradation mechanism for bisphenol A at the TiO2/H2O interfaces. Chemosphere 52(5), 851–859 (2003)

    Article  CAS  Google Scholar 

  2. K.P. Mishra, P.R. Gogate, Intensification of sonophotocatalytic degradation of p-nitrophenol at pilot scale capacity. Ultrason. Sonochem. 18(3), 739–744 (2011)

    Article  CAS  Google Scholar 

  3. S. Irmak, O. Erbatur, A. Akgerman, Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques. J. Hazard. Mater. 126(1), 54–62 (2005)

    Article  CAS  Google Scholar 

  4. T. Garoma, S. Matsumoto, Ozonation of aqueous solution containing bisphenol A: effect of operational parameters. J. Hazard. Mater. 167(1), 1185–1191 (2009)

    Article  CAS  Google Scholar 

  5. M. Mishra, D.-M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)

    Article  CAS  Google Scholar 

  6. S. Chakma, V.S. Moholkar, Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis + fenton process + UV for degradation of bisphenol A. Ind. Eng. Chem. Res. 53(16), 6855–6865 (2014)

    Article  CAS  Google Scholar 

  7. M. Ghezzar et al., Enhancement of the bleaching and degradation of textile wastewaters by Gliding arc discharge plasma in the presence of TiO2 catalyst. J. Hazard. Mater. 164(2), 1266–1274 (2009)

    Article  CAS  Google Scholar 

  8. H. Li et al., [Study on apparent kinetics of photocatalytic oxidation degradation rhodamine B by photo-Fenton reaction]. Guang pu xue yu guang pu fen xi = Guang pu 28(11), 2644–2648 (2008)

    CAS  Google Scholar 

  9. R.W. Matthews, Photo-oxidation of organic material in aqueous suspensions of titanium dioxide. Water Res. 20(5), 569–578 (1986)

    Article  CAS  Google Scholar 

  10. B. Darsinou et al., Sono-activated persulfate oxidation of bisphenol A: kinetics, pathways and the controversial role of temperature. Chem. Eng. J. 280, 623–633 (2015)

    Article  CAS  Google Scholar 

  11. Y. Chen et al., Thermotropic aromatic/lactide copolyesters with lateral methoxyethyleneoxy substituents. Chem. Mater. 15(3), 694–698 (2003)

    Article  CAS  Google Scholar 

  12. M.V. Bagal, P.R. Gogate, Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis. Ultrason. Sonochem. 21(3), 1035–1043 (2014)

    Article  CAS  Google Scholar 

  13. R.S. Malani et al., Mechanistic insight into sono-enzymatic degradation of organic pollutants with kinetic and thermodynamic analysis. Ultrason. Sonochem. 21(4), 1400–1406 (2014)

    Article  CAS  Google Scholar 

  14. R.A. Torres-Palma et al., An innovative ultrasound, Fe2+ and TiO2 photoassisted process for bisphenol a mineralization. Water Res. 44(7), 2245–2252 (2010)

    Article  CAS  Google Scholar 

  15. I. Ioan et al., Comparison of Fenton and sono-Fenton bisphenol A degradation. J. Hazard. Mater. 142(1), 559–563 (2007)

    Article  CAS  Google Scholar 

  16. S. Papoutsakis et al., Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: an initial approach. Ultrason. Sonochem. 22, 527–534 (2015)

    Article  CAS  Google Scholar 

  17. M.D.G. de Luna et al., Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. J. Hazard. Mater. 217, 200–207 (2012)

    Article  Google Scholar 

  18. P. Sathishkumar, R.V. Mangalaraja, S. Anandan, Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—a powerful tool for destruction of environmental contaminants. Renew. Sustain. Energy Rev. 55, 426–454 (2016)

    Article  CAS  Google Scholar 

  19. W. Baran, A. Makowski, W. Wardas, The influence of FeCl3 on the photocatalytic degradation of dissolved azo dyes in aqueous TiO2 suspensions. Chemosphere 53(1), 87–95 (2003)

    Article  CAS  Google Scholar 

  20. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal. B 49(1), 1–14 (2004)

    Article  CAS  Google Scholar 

  21. M.A. Mottaleb, D. Littlejohn, Application of an HPLC-FTIR modified thermospray interface for analysis of dye samples. Anal. Sci. 17(3), 429–434 (2001)

    Article  CAS  Google Scholar 

  22. F. Delval et al., Preparation, characterization and sorption properties of crosslinked starch-based exchangers. Carbohydr. Polym. 60(1), 67–75 (2005)

    Article  CAS  Google Scholar 

  23. D.A. Hinckley, P.G. Seybold, A spectroscopic/thermodynamic study of the rhodamine B lactone⇌zwitterion equilibrium. Spectrochim. Acta Part A 44(10), 1053–1059 (1988)

    Article  Google Scholar 

  24. X. Bao et al., RBAP, a rhodamine B-based derivative: synthesis, crystal structure analysis, molecular simulation, and its application as a selective fluorescent chemical sensor for Sn2+. Molecules 19(6), 7817–7831 (2014)

    Article  CAS  Google Scholar 

  25. E. Alzahrani, A. Sharfalddin, M. Alamodi, Microwave-hydrothermal synthesis of ferric oxide doped with cobalt. Adv. Nanopart. 4(02), 53 (2015)

    Article  CAS  Google Scholar 

  26. A. Sharfalddin, E. Alzahrani, M. Alamodi, Micro, sono, photocatalytic degradation of eosin B using ferric oxide doped with cobalt. Am. Chem. Sci. J. 13(3), 1–13 (2016)

    Article  CAS  Google Scholar 

  27. M. Salehi, H. Hashemipour, M. Mirzaee, Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder. Am. J. Environ. Eng. 2(1), 1–7 (2012)

    Article  Google Scholar 

  28. S. Horikoshi, N. Serpone, Coupled microwave/photoassisted methods for environmental remediation. Molecules 19(11), 18102–18128 (2014)

    Article  Google Scholar 

  29. N. Guettai, H.A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: parametric study. Desalination 185(1), 427–437 (2005)

    Article  CAS  Google Scholar 

  30. M. Penconi et al., Hydrogen production from water by photolysis, sonolysis and sonophotolysis with solid solutions of rare earth, gallium and indium oxides as heterogeneous catalysts. Sustainability 7(7), 9310–9325 (2015)

    Article  CAS  Google Scholar 

  31. R. Satheesh et al., Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α-Fe2O3 nanoparticles. J. Environ. Chem. Eng. 2(4), 1956–1968 (2014)

    Article  CAS  Google Scholar 

  32. T. Sivasankar, V.S. Moholkar, Physical insights into the sonochemical degradation of recalcitrant organic pollutants with cavitation bubble dynamics. Ultrason. Sonochem. 16(6), 769–781 (2009)

    Article  CAS  Google Scholar 

  33. R. Vinu, G. Madras, Kinetics of sonophotocatalytic degradation of anionic dyes with nano-TiO2. Environ. Sci. Technol. 43(2), 473–479 (2008)

    Article  Google Scholar 

  34. M. Ashokkumar, F. Grieser, The effect of surface active solutes on bubbles in an acoustic field. Phys. Chem. Chem. Phys. 9(42), 5631–5643 (2007)

    Article  CAS  Google Scholar 

  35. S. Chakma, V.S. Moholkar, Investigation in mechanistic issues of sonocatalysis and sonophotocatalysis using pure and doped photocatalysts. Ultrason. Sonochem. 22, 287–299 (2015)

    Article  CAS  Google Scholar 

  36. B. Neppolian, M. Ashokkumar, I. Tudela, J. González-García, in Advances in Water Treatment and Pollution Prevention, ed. by S.K. Sharma, R. Sanghi. Hybrid Sonochemical Treatment of Contaminated Wastewater: Sonophotochemical and Sonoelectrochemical Approaches. Part I: Description of the Techniques (Springer, Berlin, 2012), pp. 267–302

  37. A.M. Asiri et al., Enhanced visible light photodegradation of water pollutants over N-, S-doped titanium dioxide and n-titanium dioxide in the presence of inorganic anions. J. Saudi Chem. Soc. 18(2), 155–163 (2014)

    Article  Google Scholar 

  38. C. Guillard et al., Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photochem. Photobiol. A 158(1), 27–36 (2003)

    Article  CAS  Google Scholar 

  39. A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95(3), 735–758 (1995)

    Article  CAS  Google Scholar 

  40. S.H. Park et al., Assessment of microwave/UV/O3 in the photo-catalytic degradation of bromothymol blue in aqueous nano TiO2 particles dispersions. Nanoscale Res. Lett. 5(10), 1627–1632 (2010)

    Article  CAS  Google Scholar 

  41. B. Neppolian et al., Photocatalytic degradation of reactive yellow 17 dye in aqueous solution in the presence of TiO2 with cement binder. Int. J. Photoenergy 5(2), 45–49 (2003)

    Article  CAS  Google Scholar 

  42. F. Hao et al., Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant. Ultrason. Sonochem. 21(2), 554–558 (2014)

    Article  CAS  Google Scholar 

  43. S. Merouani et al., Sonochemical degradation of rhodamine B in aqueous phase: effects of additives. Chem. Eng. J. 158(3), 550–557 (2010)

    Article  CAS  Google Scholar 

  44. C.G. Joseph et al., Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol. Desalination 276(1), 303–309 (2011)

    Article  CAS  Google Scholar 

  45. S.G. Huling, B.E. Pivetz, In-situ chemical oxidation. 2006, DTIC Document

  46. K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4), 413–420 (2002)

    Article  CAS  Google Scholar 

  47. C.-H. Yen et al., Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: feasibility and comparison with common oxidants. J. Hazard. Mater. 186(2), 2097–2102 (2011)

    Article  CAS  Google Scholar 

  48. P. Neta et al., Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. J. Am. Chem. Soc. 99(1), 163–164 (1977)

    Article  CAS  Google Scholar 

  49. C. Liang, H.-W. Su, Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 48(11), 5558–5562 (2009)

    Article  CAS  Google Scholar 

  50. I. Kolthoff, I. Miller, The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1. J. Am. Chem. Soc. 73(7), 3055–3059 (1951)

    Article  CAS  Google Scholar 

  51. J.F. Corbin III, Mechanisms of base, mineral, and soil activation of persulfate for groundwater treatment. 2008, Citeseer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Alamoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharfalddin, A., Alzahrani, E. & Alamoudi, M. Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes. Res Chem Intermed 43, 2587–2601 (2017). https://doi.org/10.1007/s11164-016-2781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2781-7

Keywords

Navigation