Skip to main content
Log in

Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Fe3+ doped together with Au deposited TiO2 (Au/Fe3+–TiO2) was successfully prepared, which shows excellent photocatalytic activity for degradation of methyl orange (MO) under both UV and visible light (λ > 420 nm) illumination. Fe3+ has been confirmed by EPR to substitute for Ti4+ in the TiO2 lattice, and Au exists as Au0 on the surface of the photocatalyst indicated by the results of XRD. Fe3+ and Au have synergistic effects on improving the photocatalytic activity of TiO2. A proposed mechanism concerning the synergistic effects is discussed to explain the improvement of the photocatalytic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima T.N. Rao D.A. Tryk (2000) J. Photochem. Photobiol. C 1 1 Occurrence Handle1:CAS:528:DC%2BD3cXkslOjtrc%3D Occurrence Handle10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  2. M.R. Hoffmann S.T. Martin W. Choi D.W. Bahnemann (1995) Chem. Rev. 95 69 Occurrence Handle1:CAS:528:DyaK2MXjtF2qur4%3D Occurrence Handle10.1021/cr00033a004

    Article  CAS  Google Scholar 

  3. C. Hu J.C. Yu Z. Hao P.K. Wong (2003) Appl. Catal. B 42 47 Occurrence Handle1:CAS:528:DC%2BD3sXisFeqs7s%3D Occurrence Handle10.1016/S0926-3373(02)00214-X

    Article  CAS  Google Scholar 

  4. P.V. Kamat (1993) Chem. Rew. 93 267 Occurrence Handle1:CAS:528:DyaK3sXmvFOnsA%3D%3D Occurrence Handle10.1021/cr00017a013

    Article  CAS  Google Scholar 

  5. J.C. Yu W. Ho J. Yu H. Yip P.K. Wong J. Zhao (2005) Environ. Sci. Technol. 39 1175 Occurrence Handle1:CAS:528:DC%2BD2MXksFSmsg%3D%3D Occurrence Handle10.1021/es035374h

    Article  CAS  Google Scholar 

  6. W. Choi A. Termin M.R. Hoffmann (1994) J. Phys. Chem. 98 13669 Occurrence Handle10.1021/j100102a038

    Article  Google Scholar 

  7. J. Zhu F. Chen J. Zhang H. Chen M. Anpo (2004) J. Mol. Catal. A 216 35 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGgurw%3D

    CAS  Google Scholar 

  8. J. Zhu Z. Deng F. Chen J. Zhang H. Chen M. Anpo J. Huang L. Zhang (2006) Appl. Catal. B 62 329 Occurrence Handle1:CAS:528:DC%2BD28XptFKhtg%3D%3D Occurrence Handle10.1016/j.apcatb.2005.08.013

    Article  CAS  Google Scholar 

  9. K. Nagaveni M.S. Hegde G. Madras (2004) J. Phys. Chem. B 108 20204 Occurrence Handle1:CAS:528:DC%2BD2cXhtVWhsb%2FK Occurrence Handle10.1021/jp047917v

    Article  CAS  Google Scholar 

  10. S.K. Kim S.J. Hwang W. Choi (2005) J. Phys. Chem. B 109 24260 Occurrence Handle1:CAS:528:DC%2BD2MXht1KjtrrN Occurrence Handle10.1021/jp055278y

    Article  CAS  Google Scholar 

  11. X. You F. Chen J. Zhang M. Anpo (2005) Catal. Lett. 102 247 Occurrence Handle1:CAS:528:DC%2BD2MXmtFyjsbk%3D Occurrence Handle10.1007/s10562-005-5863-5

    Article  CAS  Google Scholar 

  12. X.Z. Li F.B. Li (2001) Environ. Sci. Technol. 35 2381 Occurrence Handle1:CAS:528:DC%2BD3MXjtFalu7Y%3D Occurrence Handle10.1021/es001752w

    Article  CAS  Google Scholar 

  13. V. Subramanian E.E. Wolf P.V. Kamat (2003) Langmuir 19 469 Occurrence Handle1:CAS:528:DC%2BD38XpsVSnur8%3D Occurrence Handle10.1021/la026478t

    Article  CAS  Google Scholar 

  14. R. Zanella S. Giorgio C.R. Henry C. Louis (2002) J. Phys. Chem. B 106 7634 Occurrence Handle1:CAS:528:DC%2BD38Xlt1Cjt74%3D Occurrence Handle10.1021/jp0144810

    Article  CAS  Google Scholar 

  15. J.C.S. Wu C.H. Chen (2004) J. Photochem. Photobiol. A 163 509 Occurrence Handle1:CAS:528:DC%2BD2cXjvFOlt78%3D Occurrence Handle10.1016/j.jphotochem.2004.02.007

    Article  CAS  Google Scholar 

  16. M.A. Debeila N.J. Coville M.S. Scurrell G.R. Hearne M.J. Witcomb (2004) J. Phys. Chem. B 108 18254 Occurrence Handle1:CAS:528:DC%2BD2cXptValtro%3D Occurrence Handle10.1021/jp048899k

    Article  CAS  Google Scholar 

  17. M. Graetzel R.F. Howe (1990) J. Phys. Chem. 94 2566 Occurrence Handle1:CAS:528:DyaK3cXhsFShurg%3D Occurrence Handle10.1021/j100369a064

    Article  CAS  Google Scholar 

  18. Y.C. Liu L.C. Juang (2004) Langmuir 20 6951 Occurrence Handle1:CAS:528:DC%2BD2cXlt1arsr8%3D Occurrence Handle10.1021/la049234c

    Article  CAS  Google Scholar 

  19. A.W. Xu Y. Gao H.Q. Liu (2002) J. Catal. 207 151 Occurrence Handle1:CAS:528:DC%2BD38XislyntLw%3D Occurrence Handle10.1006/jcat.2002.3539

    Article  CAS  Google Scholar 

  20. A.D. Paola G. Marci L. Palmisano M. Schiavello K. Uosaki S. Ikeda B. Ohtani (2002) J. Phys. Chem. B 106 637 Occurrence Handle10.1021/jp013074l

    Article  Google Scholar 

  21. K. Mizushima M. Tanaka A. Asai S. Iida J.B. Goodenough (1979) J. Phys. Chem. Solids 40 1129 Occurrence Handle1:CAS:528:DyaL3cXhsFGnu7g%3D Occurrence Handle10.1016/0022-3697(79)90148-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Zhang, J., Cong, Y. et al. Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2 . Catal Lett 111, 207–211 (2006). https://doi.org/10.1007/s10562-006-0149-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0149-0

Keywords

Navigation