Skip to main content
Log in

Preparation of superhydrophobic PET fabric from Al2O3–SiO2 hybrid: geometrical approach to create high contact angle surface from low contact angle materials

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work we prepare high contact Poly Ethylene Terephthalate (PET) fabric surface from low contact angle materials. Superhydrophobic PET fabric is prepared by coating the fabric with hybrid Al2O3–SiO2 sol. In this case, the high contact angle Al2O3–SiO2 hybrid is created from low contact angle Al2O3 and SiO2 precursors. PET treated with hybrid Al2O3–SiO2 exhibit Water Contact Angle (WCA) as 150°, while PET treated with individual Al2O3 sol or SiO2 sol exhibits lower WCA, (Al2O3 WCA = 137°; SiO2 WCA = 141°). FESEM and AFM investigations show that the hybrid Al2O3–SiO2 sol and individual Al2O3 or SiO2 sol imparted different roughness geometry on the PET fabric surface. We observe surface structure of fish fin-like, particle-like and hybrid fin-particle for treated PET fabric with; Al2O3, SiO2 and hybrid Al2O3–SiO2 sol, under FESEM and AFM observations.AFM observations show the evolution of roughness (Ra) dimension of different surface structures with the order of: SiO2 < Al2O3 < Al2O3–SiO2 (Ra = 31, 63 and 273 nm). We believe that the disparity of the surface geometries lead into different surface WCA. FTIR spectra of Hybrid Al2O3–SiO2 shows additional peak at 902, 850, 557, and 408 cm−1 which can be ascribed to the hybridization structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sakka S (2006) J Sol-Gel Sci Technol 37(2):135–140

    Article  CAS  MathSciNet  Google Scholar 

  2. Hatta N, Araida Y, Tadakoro M (2006) US Patent 7,022,632 B2

  3. Morita Y, Aso T, Furukawa H (2001) US patent 6,238, 745 B1

  4. Tago T (1999) US patent 5,914,415

  5. Ma M, Gupta M, Li Z, Zhai L, Gleason KK, Cohen RE, Rubner MF, Rutledge GC (2007) Adv Mater 19:159–255

    Article  Google Scholar 

  6. Kang M, Jung R, Kim HS, Jin HJ (2008) Colloids Surf A 313–314:411–414

    Article  Google Scholar 

  7. Taurino R, Fabbri E, Messori M, Pilatti F, Pospiech D, Synytska A, Colloid J (2008) Interface Sci 325:149–156

    CAS  Google Scholar 

  8. Yuyang Liu, a Jing Tang, b Ronghua Wang, a Haifeng Lu, Li Li, Yeeyee Kong, Kaihong Qia, Xina JH (2007) J Mater Chem 17:1071–1078

  9. Xu Bi, Cai Zaisheng (2008) Appl Surf Sci 254:5899–5904

    Article  CAS  ADS  Google Scholar 

  10. Hoefnagels HF, Wu D, With G, Ming W (2007) Langmuir 23:13158–13163

    Article  CAS  PubMed  Google Scholar 

  11. Xue CH, Jia ST, Zhang J, Tian LQ (2009) 517:4593–4598

  12. Daoud W, Xin JH, Tao X (2004) J Am Ceram Soc 87(9):1782–1784

    Article  CAS  Google Scholar 

  13. Zimmermann J, Rabe M, Artus GRJ, Seeger S (2008) Soft Matter 4:450–452

    Article  CAS  Google Scholar 

  14. Mahltig B, Botcher H (2003) J Sol-Gel Sci Technol 27:43–52

    Article  CAS  Google Scholar 

  15. Satoh K, Nakzumi H, Morita M, Sol-Gel J (2003) Sci Technol 27:327–332

    CAS  Google Scholar 

  16. Geun BY, Byung GM, Young GJ, Sang CL, Jin JH, Gwang HK (2009) J Colloid Interface Sci. doi:10.1016/j.jcis04.066

  17. Yang C, Tartaglino U, Persson BNJ (2006) Phys Rev Lett 97:116103

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Nosonovsky M, Bhushan B (2008) Adv Funct Mater 18:843–855

    Article  CAS  Google Scholar 

  19. Li S, Xie H, Zhang S, Wang X (2007) 4857–4859

  20. Dorrer C, Rühe J (2008) Adv Mater 20:159–163

    Article  CAS  Google Scholar 

  21. Tadanaga K, Katata N, Minami T (1997) J Am Ceram Soc 80(4):1040–1042

    Article  CAS  Google Scholar 

  22. Tadanaga K, Katata N, Minami T (1997) J Am Ceram Soc 80(12):3213–3216

    Article  CAS  Google Scholar 

  23. Wenzel RN (1936) Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  24. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546

    Article  CAS  Google Scholar 

  25. Lafuma A, Quere D (2003) Superhydrophobic States. Nat Mater 2:457–460

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Tutejaa A, Choib W, Mabryc JM, McKinleyb GH, Cohen RE (2008) Proceeding of the National Academy of Science 105(47):18200–18205

    Article  ADS  Google Scholar 

  27. Zhang J, Sheng X, Jiang L (2009) Langmuir 25:1371–1376

    Article  PubMed  Google Scholar 

  28. Zhang BT, Liu BL, Deng XB, Cao SS, Hou XH, Chen HL (2008) Colloid Polym Sci 286:453–457

    Article  CAS  Google Scholar 

  29. Anindarupa SS, Weifeng C, Linan F, Zhaiw L (2008) J Am Ceram Soc 91(8):2751–2755

    Article  Google Scholar 

  30. Daoud WA, Xin JH, Tao X (2006) Appl Surf Sci 252:5368–5371

    Article  CAS  ADS  Google Scholar 

  31. Mahltig B, Audenaert F, Bottcher H, Sol-Gel J (2005) Sci Technol 34:103–109

    CAS  Google Scholar 

  32. Tadanaga K, Kitamuro K, Matsuda A, Minami T (2003) J Sol-Gel Sci Technol 26:705–708

    Article  CAS  Google Scholar 

  33. Hyde GK, Park KJ, Stewart SM, Hinestroza JP, Parsons GN (2007) Langmuir 23:9844–9849

    Article  CAS  PubMed  Google Scholar 

  34. Kim D, Hwang W, Park HC, Lee K-H (2008) Curr Appl Phys 8:770–773

    Article  ADS  Google Scholar 

  35. Hosono E, Fujihara S, Honma I, Zhou H (2005) J Am Chem Soc 127:13458–13459

    Article  CAS  PubMed  Google Scholar 

  36. Mahltig B, Haufe H, Bottcher H, Mater J (2005) Chem 5:4385–4398

    Google Scholar 

  37. Kulkarni SA, Ogale SB, Vijayamohanan KP, Colloid J (2008) Interface Sci 318:372–379

    CAS  Google Scholar 

  38. Rose D, Marier JR (1997) National research council of Canada NRC associate committee on scientific criteria for environmental quality 1997 ISSN 0316-0114

  39. Nosonovsky M, Bhushan B (2005) Microsyst Technol 11:535–549

    Article  CAS  Google Scholar 

  40. Marmur A (2008) Langmuir 24:7573–7579

    Article  CAS  PubMed  Google Scholar 

  41. Fortress F (1954) Silicone resins in textiles. Ind Chem Eng Res 46(11):2325–2331

    Article  Google Scholar 

  42. Hasan MMB, Calvimontes A, Dutschk V, Surfact J (2009) Deterg. doi:10.1007/s11743-009-1130-x

  43. Cheng YT, Rodak DE (2005) Appl Phys Lett 86:144011

    Google Scholar 

  44. Leea JY, Leeb SH, Kima SW (2000) Mater Chem Phys 63:251–255

    Article  Google Scholar 

  45. Neinhius C, Barthlott W (1997) 79:667–677

  46. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Langmuir 18:5818–5822

    Article  CAS  Google Scholar 

  47. Marmur A (2003) Langmuir 19:8343–8348

    Article  CAS  Google Scholar 

  48. Wu LYL, Soutar AM, Zeng XT (2005) Sur Coat Technol 198:420–424

    Article  CAS  Google Scholar 

  49. Launer PJ (1987) “Infrared analysis of organosilicon compounds: spectra-structure correlations,” silicon compounds register and review. In: Arkles B (et al) (ed) Petrarch Systems, pp 100

  50. Schubert U, Hüsing N, Laine R (2008) Materials syntheses: a practical guide. Springer, Wien, New York, p 50

    Google Scholar 

  51. Andradea AL, Marco RM, Maiab T, Lopesb MT, Edmundo C, Dominguesa SRZ (2004) Mater Res 7(4):635–638

    Google Scholar 

  52. Zhao G, Tohge N (1998) Mater Res 33(1):21–30

    Article  CAS  Google Scholar 

  53. Cavalu S, Simon V, Banica F, Deleanu C (2007) Romanian J Biophys 17(4):237–245

    CAS  Google Scholar 

  54. Jakobsson S (2002) Appl Spectrosc 56:6

    Article  Google Scholar 

  55. Fürj J, Gyollai I, Bérczi SZ, Gucsik A, Szekrénye ZS (2009) ”Infrared spectroscopy of shocked feldspars in lunar meteorites Yamato-86032 Regolith Breccia, and Asuka-881757 Lunar Labbro. In: Proceeding in the 32nd symposium on Antarctic Meteorites, June 3 and 4, 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Damayanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damayanti, N.P. Preparation of superhydrophobic PET fabric from Al2O3–SiO2 hybrid: geometrical approach to create high contact angle surface from low contact angle materials. J Sol-Gel Sci Technol 56, 47–52 (2010). https://doi.org/10.1007/s10971-010-2271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2271-0

Keywords

Navigation