Skip to main content
Log in

Treatment of gas containing hydrophobic VOCs by adsorption process on raw and intercalated clays

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The adsorption of volatile organic compound VOC (o-xylene, m-xylene, p-xylene, benzene, and toluene) as a single solute or as a hydrocarbons mixture was studied by a static headspace coupled to gas chromatography in raw and intercalated clay. Vapor–solid adsorption isotherms of VOC were measured at 20, 30, and 40 °C. Clay was modified with hexadecyltrimethylammonium bromide (HDTMABr). The values of the amounts of VOC adsorbed in HDTMA clay were about 18 times higher than raw clay. It was observed that adsorption capacities of VOCs were strongly dependent on their properties including molecular weight, boiling point, and polarizability. Furthermore, clay materials have higher adsorption affinity for the xylene than for other VOC, which could be attributed to the interaction of its two adjacent methyl groups with clay surface. The adsorption isotherms were fitted with Langmuir, Freundlich, Langmuir–Freundlich, and Toth models. Langmuir–Freundlich model is the best. The evaluation of thermodynamic parameters presents an exothermic and spontaneous adsorption process. Thermal regeneration of raw and HDTMA clays was also investigated to evaluate its efficiency. Therefore, clay materials could be attractive candidate adsorbents for VOC removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P. Hunter, S.T. Oyama, Control of Volatile Organic Compounds Emissions in Conventional and Emerging Technologies (Wiley, New York, 2000)

    Google Scholar 

  2. D.P. Serrano, G. Calleja, J.A. Botas, F.J. Gutierrez, Ind. Eng. Chem. Res. 43, 7010–7018 (2004)

    Article  CAS  Google Scholar 

  3. M. Guillemot, J. Mijoin, S. Mignard, P. Magnoux, Ind. Eng. Chem. Res. 46, 4614–4620 (2007)

    Article  CAS  Google Scholar 

  4. X. Hu, S. Qiao, X. Zhao, G. Lu, Ind. Eng. Chem. Res. 40, 862–867 (2001)

    Article  CAS  Google Scholar 

  5. F.I. Khan, A.K. Ghoshal, J. Loss, Prev. Process. Ind. 13, 527–545 (2000)

    Article  Google Scholar 

  6. H. Kahraman, H. Gecki, Eng. Life Sci. 5(4), 363–368 (2005)

    Article  CAS  Google Scholar 

  7. N. Dammak, N. Fakhfakh, S. Fourmentin, M. Benzina, J. Environ. Chem. Eng. 1, 667–675 (2013)

    Article  CAS  Google Scholar 

  8. H. He, R.L. Frost, T. Bostrom, P. Yuan, L. Duong, D. Yang, Y. Xi, J.T. Kloprogge, Appl. Clay Sci. 31, 262–271 (2006)

    Article  CAS  Google Scholar 

  9. I. Jarraya, S. Fourmentin, M. Benzina, S. Bouaziz, Chem. Geol. 275, 1–8 (2010)

    Article  CAS  Google Scholar 

  10. S.H. Lin, M.J. Cheng, Waste Manag 22, 595–603 (2002)

    Article  CAS  Google Scholar 

  11. M. Darder, M. Colilla, E. Ruiz-Hitzky, Appl. Clay Sci. 28, 199–208 (2005)

    Article  CAS  Google Scholar 

  12. Z. Li, W.T. Jiang, Thermochim. Acta 483, 58–65 (2009)

    Article  CAS  Google Scholar 

  13. S.Y. Lee, S.J. Kim, C.H. Jeong, Chemosphere 55, 781–785 (2003)

    Article  Google Scholar 

  14. M.N. Carvalho, M. da Motta, M. Benachour, D.C.S. Sales, C.A.M. Abreu, J. Hazard. Mater. 239–240, 95–101 (2012)

    Article  Google Scholar 

  15. I. Jarraya, S. Fourmentin, M. Benzina, S. Bouaziz, Can. J. Chem. Eng. 89, 392–400 (2011)

    Article  CAS  Google Scholar 

  16. F. Ayari, E. Srasra, M. Trabelsi-Ayadi, Desalination 185, 391–397 (2005)

    Article  CAS  Google Scholar 

  17. M. Sakizci, B.E. Alver, E. Yorukogullari, J. Therm. Anal. Calorim. 98, 429–436 (2009)

    Article  CAS  Google Scholar 

  18. C.Y. Ryu, S.D. Yeo, J. Ind. Eng. Chem. 16, 441–447 (2010)

    Article  CAS  Google Scholar 

  19. S.J. Chipera, D.L. Bish, Clays Clay Miner. 49, 398–409 (2001)

    Article  CAS  Google Scholar 

  20. H.L. Hong, W.T. Jiang, X. Zhang, L. Tie, Z. Li, Appl. Clay Sci. 42, 292–299 (2008)

    Article  CAS  Google Scholar 

  21. Y. Seki, K. Yurdakoc, J. Colloid Interface Sci. 287, 1–5 (2005)

    Article  CAS  Google Scholar 

  22. S.E. Burns, S.L. Bartlet-Hunt, J.A. Smith, A.Z. Redding, J. Geotech. Geoenviron. Eng. 132(11), 1404–1412 (2006)

    Article  CAS  Google Scholar 

  23. H. Zhao, G.F. Vance, Water Res. 32, 3710–3717 (1998)

    Article  CAS  Google Scholar 

  24. A. Walcarius, M. Etienne, J. Bessiere, Chem. Mater. 14, 2757–2766 (2002)

    Article  CAS  Google Scholar 

  25. S. Yapar, Colloids and surfaces A: physicochem. Eng. Asp. 345, 75–81 (2009)

    Article  CAS  Google Scholar 

  26. H. Zaitan, D. Bianchi, O. Achak, T. Chafik, J. Hazard. Mater. 153, 852–859 (2008)

    Article  CAS  Google Scholar 

  27. Z. Bouberka, A. Khenifi, F. Sekrane, N. Bettahar, Z. Derriche, Chem. Eng. J. 136, 295–305 (2008)

    Article  Google Scholar 

  28. N. Dammak, N. Fakhfakh, S. Fourmentin, M. Benzina, MATEC Web of Conferences. (2013). doi: 10.1051/matecconf/20130504025

  29. F. Qu, L. Zhu, K. Yang, J. Hazard. Mater. 170, 7–12 (2009)

    Article  CAS  Google Scholar 

  30. A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche, Z. Derriche, Adsorption 13, 149–158 (2007)

    Article  CAS  Google Scholar 

  31. S. Meenakshi, N. Viswanathan, J. Colloid Interface Sci. 308, 438–450 (2007)

    Article  CAS  Google Scholar 

  32. C.L. Yaws (ed.), Chemical Properties Handbook (McGraw-Hill, Beijing, 1999)

    Google Scholar 

  33. I. Ahmad, J.A. Anderson, C.H. Rochester, T.J. Dines, J. Mol. Catal. A 135, 63–73 (1998)

    Article  CAS  Google Scholar 

  34. E. Diaz, S. Ordonez, A. Vega, J. Coca, J. Chromatogr. A 1049, 139–146 (2004)

    Article  CAS  Google Scholar 

  35. R.M. Silverstein, X. Websterin, Spectrometric Identification of Organic Compounds (Wiley, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto 1997)

  36. M.L. Chang, S.C. Wu, P.J. Chen, S.C. Cheng, Environ. Toxicol. Chem. 22(9), 1956–1962 (2003)

    Article  CAS  Google Scholar 

  37. Y.H. Shih, S.C. Wu, Environ. Toxicol. Chem. 23(9), 2061–2067 (2004)

    Article  CAS  Google Scholar 

  38. N.C. Vidal, C. Volzone, Appl. Clay Sci. 45, 227–231 (2009)

    Article  CAS  Google Scholar 

  39. I. Jarraya, S. Fourmentin, M. Benzina, J. Soc. Chim. Tun. 12, 139–149 (2010)

    CAS  Google Scholar 

  40. Y. Yu, Y.Y. Zhuang, Z.H. Wang, J. Colloid Interface Sci. 242, 288–293 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Dammak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dammak, N., Fakhfakh, N., Fourmentin, S. et al. Treatment of gas containing hydrophobic VOCs by adsorption process on raw and intercalated clays. Res Chem Intermed 41, 5475–5493 (2015). https://doi.org/10.1007/s11164-014-1675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1675-9

Keywords

Navigation