Skip to main content
Log in

New colorimetric chemosensor based on rhodamine hydrazide to detect Cu2+ ions by naked eye

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A rhodamine-based chemosensor for naked-eye detection of Cu2+ has been designed and synthesized, which exhibited excellent selectivity and high sensitivity for Cu2+ in CH3CN and CH3CN/H2O mixed solutions. When Cu2+ was added to the solution of sensor 1, a dramatic color change from colorless to bluish violet was observed, while the cations K+, Ca2+, Na+, Hg2+, Zn2+, Co2+, Ni2+, Fe3+, Al3+, Pb2+, Ag+, and Cd2+ did not interfere with the recognition process for Cu2+. The pH effect investigations indicated that it can be applied to analysis of samples over a wide pH range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.P. DeSilva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)

    Article  CAS  Google Scholar 

  2. R. Martinez-Manez, F. Sancenon, Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476 (2003)

    Article  CAS  Google Scholar 

  3. A.B. Descalzo, R. Martinez-Manez, R. Radeglia, K. Rurack, J. Soto, Coupling selectivity with sensitivity in an integrated chemosensor framework: design of a Hg2+-responsive probe, operating above 500 nm. J. Am. Chem. Soc. 125, 3418–3419 (2003)

    Google Scholar 

  4. A.P. de Silva, D.B. Fox, A.J.M. Huxley, T.S. Moody, Combining luminescence, coordination and electron transfer for signaling purposes. Coord. Chem. Rev. 205, 41–57 (2000)

    Google Scholar 

  5. U.E. Spichiger-Keller (ed.), Chemical sensors and biosensors for medical and biological applications (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  6. A.W. Czarnik (ed.), Fluorescent chemosensors for Ion and molecular recognition (American Chemical Society, Washington, DC, 1993)

  7. P.B. Tchounwou, W.K. Ayensu, N. Ninashvili, D. Sutton, Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18, 149–175 (2003)

    Google Scholar 

  8. M. Angelova, S. Asenova, V. Nedkova, R. Koleva-Kolarova, Copper in the human organism. Trakia J. Sci. 9, 88–89 (2011)

    Google Scholar 

  9. R. Uauy, M. Olivares, M. Gonzalez, Essentiality of copper in humans. Am. J. Clin. Nutr. 67, 952S–959S (1998)

    CAS  Google Scholar 

  10. N.J. Robinson, D.R. Winge, Copper metallochaperones. Ann. Rev. Biochem. 79, 537–562 (2010)

    Article  CAS  Google Scholar 

  11. D.J. Thiele, J.D. Gitlin, Assembling the pieces. Nat. Chem. Biol. 4, 145–147 (2008)

    Article  CAS  Google Scholar 

  12. A. Mathie, G.L. Sutton, C.E. Clarke, E.L. Veale, Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111, 567–583 (2006)

    Article  CAS  Google Scholar 

  13. E. Madsen, J.D. Gitlin, Copper and iron disorders of the brain. Ann. Rev. Neurosci. 30, 317–337 (2007)

    Article  CAS  Google Scholar 

  14. T. Hirayama, G.C. Van de Bittnera, L.W. Gray, S. Lutsenko, C.J. Chang, Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl. Acad. Sci. 109, 2228–2233 (2012)

    Article  CAS  Google Scholar 

  15. J.S. Valentine, P.J. Hart, Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 100, 3617–3622 (2003)

    Article  CAS  Google Scholar 

  16. C. Vulpe, B. Levinson, S. Whitney, S. Packman, J. Gitschier, Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat. Genet. 3, 7–13 (1993)

    Article  CAS  Google Scholar 

  17. S.G. Kaler, ATP7A-related copper transport diseases-emerging concepts and future trends. Nat. Rev. Neurol. 7, 15–29 (2011)

    Article  CAS  Google Scholar 

  18. Y.H. Hung, A.I. Bush, R.A. Cherny, Copper in the brain and Alzheimer’s disease. J. Biol. Inorg. Chem. 15, 61–76 (2010)

    Article  CAS  Google Scholar 

  19. J.C. Lee, H.B. Gray, J.R. Winkler, Copper binding to a-synuclein, the Parkinson’s protein. J. Am. Chem. Soc. 130, 6898–6899 (2008)

    Article  Google Scholar 

  20. A.K. Jain, R.K. Singh, S. Jain, J. Raisoni, Copper(II) ion selective electrode based on a newly synthesized schiff-base chelate. Transition Met. Chem. 33, 243–249 (2008)

    Google Scholar 

  21. S.L. Belli, A. Zirino, Behavior and calibration of the copper(II) ion-selective electrode in high chloride media and marine waters. Anal. Chem. 65, 2583–2589 (1993)

    Google Scholar 

  22. M.Y. Pamukoglu, F. Kargi, Elimination of Cu2+ toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu2+ containing synthetic wastewater. J. Hazard. Mater. 148, 274–280 (2007)

    Article  CAS  Google Scholar 

  23. P.G. Welsh, J. Lipton, C.A. Mebane, J.C.A. Marr, Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout. Eco Toxicol. Environ. Safe. 69, 199–208 (2008)

    Article  CAS  Google Scholar 

  24. K.N. Buck, J.R.M. Ross, A.R. Flegal, K.W. Bruland, A review of total dissolved copper and its chemical speciation in San Francisco Bay, California. Environ. Res. 105, 5–19 (2007)

    Article  CAS  Google Scholar 

  25. E. Van Genderen, R. Gensemer, C. Smith, R. Santore, A. Ryan, Evaluation of the biotic ligand model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness. Aquat. Toxicol. 84, 279–291 (2007)

    Article  Google Scholar 

  26. P. Kumar, R.K. Tewari, P.N. Sharma, Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep. 27, 399–409 (2008)

    Article  CAS  Google Scholar 

  27. J. Huang, Y. Xu, X. Qian, A red-shift colorimetric and fluorescent sensor for Cu2+ in aqueous solution: unsymmetrical 4,5-diaminonaphthalimide with N-H deprotonation induced by metal ions. Org. Biomol. Chem. 7, 1299–1303 (2009)

    Google Scholar 

  28. Z. Guo, W. Zhu, H. Tian, Hydrophilic copolymer bearing dicyanomethylene-4H-pyran moiety as fluorescent film sensor for Cu2+ and pyrophosphate anion. Macromolecules 43, 739–744 (2010)

    Google Scholar 

  29. Y. Hu, Q. Li, H. Li, Q. Guo, Y. Lua, Z. Li, A novel class of Cd2+, Hg2+ turn-on and Cu2+, Zn2+ turn-off Schiff base fluorescent probes. Dalton T. 39, 11344–11352 (2010)

    Google Scholar 

  30. J. Liu, Y. Lu, Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. Chem. Commun. 46, 4872–4874 (2007)

    Article  Google Scholar 

  31. S.J. Lee, S.S. Lee, J.Y. Lee, J.H. Jung, A functionalized inorganic nanotube for the selective detection of copper (II) Ion. Chem. Mater. 18, 4713–4715 (2006)

    Article  CAS  Google Scholar 

  32. R. Sheng, P. Wang, Y. Gao, Y. Wu, W. Liu, J. Ma et al., Colorimetric test kit for Cu2+ detection. Org. Lett. 10, 5015–5018 (2008)

    Article  CAS  Google Scholar 

  33. S. Basurto, O. Riant, D. Moreno, J. Rojo, T. Torroba, Colorimetric detection of Cu2+ cation andacetate, benzoate, and cyanide anions by cooperative receptor binding in new a, a‘-Bis-substituted Donore-Acceptor Ferrocene Sensors. J. Org. Chem. 72, 4673–4788 (2007)

    Google Scholar 

  34. M. Schmittel, H.W. Lin, Quadruple-channel sensing: a molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis. Angew. Chem. Int. Edit. 46, 893–896 (2007)

    Article  CAS  Google Scholar 

  35. Q. Li, M. Peng, N. Li, J.G. Qin, Z. Li, New colorimetric chemosensor bearing naphthalendiimide unit with large blue-shift absorption for naked eyes detection of Cu2+ ions. Sens. Actuators B 173, 580–584 (2012)

    Article  CAS  Google Scholar 

  36. N.R. Chereddy, T. Sathiah, Synthesis of a highly selective bis-rhodamine chemosensor for naked-eye detection of Cu2+ ions and its application in bio-imaging. Dyes Pigm. 91, 378–382 (2011)

    Article  CAS  Google Scholar 

  37. J.M. Kwon, Y.J. Jang, Y.J. Lee, K.M. Kim, M.S. Seo, W. Nam et al., A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc. 127, 10107–10111 (2005)

    Article  CAS  Google Scholar 

  38. M.H. Lee, J.S. Wu, J.W. Lee, J.H. Jung, J.S. Kim, Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org. Lett. 9, 2501–2504 (2007)

    Article  CAS  Google Scholar 

  39. S.K. Ko, Y.K. Yang, J. Tae, I. Shin, In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc. 128, 14150–14155 (2006)

    Article  CAS  Google Scholar 

  40. K. Ghosh, T. Sarkar, A. Samadderb, A.R. Khuda-Bukhsh, Rhodamine-based bis-sulfonamide as a sensing probe for Cu2+ and Hg2+ ions. New J. Chem. 36, 2121–2127 (2012)

    Article  CAS  Google Scholar 

  41. L. Wang, J. Yan, W. Qin, W. Liu, R. Wang, A new rhodamine-based single molecule multianalyte (Cu2+, Hg2+) sensor and its application in the biological system. Dyes Pigm. 92, 1083–1090 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the self-innovation project for universities and institutes of Jinan City (No. 201202035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Datong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Ma, Y. & An, R. New colorimetric chemosensor based on rhodamine hydrazide to detect Cu2+ ions by naked eye. Res Chem Intermed 41, 5059–5069 (2015). https://doi.org/10.1007/s11164-014-1588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1588-7

Keywords

Navigation