Skip to main content
Log in

Photocatalytic reduction of nitroarenes to azo compounds over N-doped TiO2: relationship between catalysts and chemical reactivity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This work deals with selective reduction of aromatic nitro compounds to corresponding symmetrical substituted azo compounds using nitrogen-doped TiO2 nanoparticles as photocatalyst in the presence of a catalytic amount of formic acid. Various azo compounds containing additional reducible substituents including halogens, and carboxyl and phenol functions have been synthesized in a single step by use of this catalyst. The conversion was reasonably fast, clean, and high yielding at room temperature. A mechanism of formation for the azo compounds is proposed. The behavior of the N/TiO2 catalyst is of particular interest because this is the first time, as far as we know, that formation of azo compounds has been catalyzed by an N-doped TiO2 photocatalyst. Nitrogen-doped TiO2 was prepared by a simple modified sol–gel process with urea as nitrogen source. The catalysts were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and transmission electron microscopy. The chemical nature of N was identified by XPS as N–Ti–O in the anatase TiO2 lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. T. Kondo, Y. Ysuji, Y. Watanabe, Tetrahedron Lett. 29, 3833 (1988)

    Article  CAS  Google Scholar 

  2. H. Tada, M. Hyodo, H. Kawahara, J. Phys. Chem. 95, 10185 (1991)

    Article  CAS  Google Scholar 

  3. H. Yoshida, C. Murata, T. Hattori, J. Catal. 194, 364 (2000)

    Article  CAS  Google Scholar 

  4. D.F. Ollis, E. Pellizetti, N. Serpone, Environ. Sci. Technol. 25, 1523 (1991)

    Article  Google Scholar 

  5. M.R. Hoffmann, S.T. Martin, W. Choi, D. Bahnemann, Chem. Rev. 69, 95 (1995)

    Google Scholar 

  6. X.X. Yang, C.D. Cao, K. Hohn et al., J. Catal. 252, 296 (2007)

    Article  CAS  Google Scholar 

  7. N. Sobana, M. Muruganadham, M. Swaminathan, J. Mol. Catal. A 258, 124 (2006)

    Article  CAS  Google Scholar 

  8. N. Venkatachalam, M. Palanichamy, B. Arabindoo et al., J. Mol. Catal. A 266, 158 (2007)

    Article  CAS  Google Scholar 

  9. N. Venkatachalam, M. Palanichamy, V. Murugesan, J. Mol. Catal. A 273, 177 (2007)

    Article  CAS  Google Scholar 

  10. H.H. Ou, S.L. Lo, J. Mol. Catal. A 275, 200 (2007)

    Article  CAS  Google Scholar 

  11. J. Zhu, J. Ren, Y.N. Huo, Z.F. Bian, H.X. Li, J. Phys. Chem. C 111, 18965 (2007)

    Article  CAS  Google Scholar 

  12. Sayilkan Hikmet, Appl. Catal. A 319, 230 (2007)

    Article  Google Scholar 

  13. J.G. Yu, M.H. Zhou, B. Cheng, X.J. Zhao, J. Mol. Catal. A 246, 176 (2006)

    Article  CAS  Google Scholar 

  14. K.S. Yang, Y. Dai, B. Huang, J. Phys. Chem. C 111, 18985 (2007)

    Article  CAS  Google Scholar 

  15. S. In, A. Orlov, R. Berg et al., J. Am. Chem. Soc. 129, 13790 (2007)

    Article  CAS  Google Scholar 

  16. G.M. Liu, T.X. Wu, J.C. Zhao et al., Environ. Sci. Technol. 33, 2081 (1999)

    Article  CAS  Google Scholar 

  17. T.X. Wu, T. Liu, J.C. Zhao et al., Environ. Sci. Technol. 33, 1379 (1999)

    Article  CAS  Google Scholar 

  18. Y.M. Cho, W.Y. Choi, C.H. Lee et al., Environ. Sci. Technol. 35, 966 (2001)

    Article  CAS  Google Scholar 

  19. J. Soria, J.C. Conesa, V. Augugliaro et al., J. Phys. Chem. 95, 274 (1991)

    Article  CAS  Google Scholar 

  20. B. Kraeutler, A.J. Bard, J. Am. Chem. Soc. 100, 2239 (1978)

    Article  CAS  Google Scholar 

  21. B. Kraeutler, A. Bard, J. Nouv. J. Chim. 3, 31 (1979)

    CAS  Google Scholar 

  22. T. Sakata, T. Kawai, K. Hashimoto, J. Phys. Chem. 88, 2344 (1984)

    Article  CAS  Google Scholar 

  23. B.R. Eggins, J.T.S. Irvine, E.P. Murphy et al., J. Chem. Soc. Chem. Commun. 19, 1123 (1988)

    Article  Google Scholar 

  24. J. Muzyka, M.A. Fox, J. Photochem. Photobiol. A 57, 27 (1991)

    Article  CAS  Google Scholar 

  25. L. Lin, R.R. Kuntz, Langmuir 8870, (1992)

  26. Hanyu Chen, Huixia Jin, Bin Dong, Res. Chem. Intermed. 38, 2335–2342 (2012)

    Article  CAS  Google Scholar 

  27. Yunfei Ma, Jinlong Zhang, Baozhu Tian et al., Res. Chem. Intermed. 38, 1947–1960 (2012)

    Article  CAS  Google Scholar 

  28. H.S. Jie, H.B. Lee, K.H. Chae et al., Res. Chem. Intermed. 38, 1171–1180 (2012)

    Article  CAS  Google Scholar 

  29. Ying Yang, Congxue Tian, Res. Chem. Intermed. 38, 693–703 (2012)

    Article  Google Scholar 

  30. W. Zhang, X.D. Jia, L. Yang et al., Tetrahedron Lett. 43, 9433 (2002)

    Article  CAS  Google Scholar 

  31. M.L. Kantam, S. Laha, J. Yadav et al., Tetrahedron Lett. 47, 6213 (2006)

    Article  CAS  Google Scholar 

  32. G.R. Srinivasa, K. Abiraj, D.C. Gowda, Tetrahedron Lett. 44, 5835 (2003)

    Article  CAS  Google Scholar 

  33. M.C. Garrigós, F. Reche, M.L. Marínb, A. Jiménez, J. Chromatogr. A 976, 309 (2002)

    Article  Google Scholar 

  34. F.A. Khan, J.C. Dash, R. Sudheer, Tetrahedron Lett. 44, 7783 (2003)

    Article  CAS  Google Scholar 

  35. R.D. Little, G.M. Venegas, J. Org. Chem. 43, 2921 (1978)

    Article  CAS  Google Scholar 

  36. T.F. Chung, Y.M. Wu, C.H. Cheng, J. Org. Chem. 49, 1215 (1984)

    Article  CAS  Google Scholar 

  37. E.D. Brady, D.L. Clark, D.W. Keogh et al., J. Am. Chem. Soc. 124, 7007 (2002)

    Article  CAS  Google Scholar 

  38. S. Gowda, K. Abiraj, D.C. Gowda, Tetrahedron Lett. 43, 1329 (2002)

    Article  CAS  Google Scholar 

  39. S. Gowda, D.C. Gowda, Tetrahedron 58, 2211 (2002)

    Article  CAS  Google Scholar 

  40. Y.F. Chen, C.Y. Lee, M.Y. Yeng, H.T. Chiu, J. Cryst. Growth 247, 363 (2003)

    Article  CAS  Google Scholar 

  41. K. Di, Y. Zhu, X. Yang, C. Li, Colloids Surf. A 280, 71 (2006)

    Article  CAS  Google Scholar 

  42. K.S. Rane, R. Mhalsiker, S. Yin et al., J. Solid State Chem. 179, 3033 (2006)

    Article  CAS  Google Scholar 

  43. X. Chen, C. Burda, J. Phys. Chem. B 108, 15446 (2004)

    Article  CAS  Google Scholar 

  44. Y. Liu, D.Z. Sun, Appl. Catal. B 72, 205 (2007)

    Article  CAS  Google Scholar 

  45. M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Chem. Mater. 17, 6349 (2005)

    Article  CAS  Google Scholar 

  46. K. Kobayakawa, Y. Murakami, Y. Sato, J. Photochem. Photobiol. A 170, 177 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by financial assistance from the Science and Technology of Shanxi Province, China (project no. 2006031141), and the Natural Science Fund of Shanxi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huqun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yang, X., Xiong, W. et al. Photocatalytic reduction of nitroarenes to azo compounds over N-doped TiO2: relationship between catalysts and chemical reactivity. Res Chem Intermed 41, 3981–3997 (2015). https://doi.org/10.1007/s11164-013-1504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1504-6

Keywords

Navigation