Skip to main content
Log in

Synthesis of visible light-driven Eu, N co-doped TiO2 and the mechanism of the degradation of salicylic acid

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Europium and nitrogen co-doped TiO2 was successfully synthesized by the precipitation–peptization method. The structure and properties of the catalysts were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–vis diffuse reflectance spectra. The photocatalytic efficiency was evaluated by monitoring the photocatalytic degradation of salicylic acid under visible light irradiation. It was verified that TiO2 co-doped with nitrogen and 1% europium showed the highest photocatalytic activity. The adsorption isotherms were obtained by measuring the salicylic acid concentration before and after the dark adsorption at different original solution concentrations. The results illustrated that the doping of Eu was beneficial to the adsorption of salicylic acid. The probable degradation mechanism of salicylic acid was examined by the addition of NaF, Na2S2O3, and K2S2O8 as the probe molecules. It was verified that salicylic acid was first adsorbed on the surface of the catalysts, followed by the degradation by the photogenerated holes (h +vb ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.X. Liu, F.B. Li, X.Z. Li, J. Hazard. Mater. 152, 347 (2008)

    Article  CAS  Google Scholar 

  2. J. Grzechulska, A.W. Morawski, Appl. Catal. B Environ. 36, 45 (2002)

    Article  CAS  Google Scholar 

  3. C. Young, T.M. Lim, K. Chiang, J. Scott, R. Amal, Appl. Catal. B Environ. 78, 1 (2008)

    Article  CAS  Google Scholar 

  4. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  5. W. Balcerski, S.Y. Ryu, M.R. Hoffmann, J. Phys. Chem. C 111, 15357 (2007)

    Article  CAS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  7. Y. Cong, J.L. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976 (2007)

    Article  CAS  Google Scholar 

  8. M. Sathish, B. Viswanathan, R. Viswanath, C. Gopinath, Chem. Mater. 17, 6349 (2005)

    Article  CAS  Google Scholar 

  9. Y.M. Wu, M.Y. Xing, B.Z. Tian, J.L. Zhang, F. Chen, Chem. Eng. J. 162, 710 (2010)

    Article  CAS  Google Scholar 

  10. T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita, K. Asai, J. Appl. Phys. 93, 5156–5160 (2003)

    Article  CAS  Google Scholar 

  11. Y.M. Wu, J.L. Zhang, L. Xiao, F. Chen, Appl. Surf. Sci. 256, 4260 (2010)

    Article  CAS  Google Scholar 

  12. Y.M. Wu, M.Y. Xing, J.L. Zhang, F. Chen, Appl. Catal. B Environ. 97, 182 (2010)

    Article  CAS  Google Scholar 

  13. A. Zaleska, E. Grabowska, J.W. Sobczak, M. Gazda, J. Hupka, Appl. Catal. B Environ. 89, 469 (2009)

    Article  CAS  Google Scholar 

  14. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109, 11414 (2005)

    Article  Google Scholar 

  15. H.K. Shon, D.L. Cho, S.H. Na, J.B. Kim, H.-J. Park, J.H. Kim, J. Ind. Eng. Chem. 15, 476 (2009)

    Article  CAS  Google Scholar 

  16. J.F. Zhu, W. Zheng, J.L. Zhang, M. Anpo, J. Mol. Catal. A Chem. 216, 35 (2004)

    Article  CAS  Google Scholar 

  17. B.Z. Tian, C.Z. Li, F. Gu, H.B. Jiang, Y.J. Hu, J.L. Zhang, Chem. Eng. J. 151, 220 (2009)

    Article  CAS  Google Scholar 

  18. S.A.K. Leghari, S. Sajjad, F. Chen, J.L. Zhang, Chem. Eng. J. 166, 906 (2010)

    Article  Google Scholar 

  19. V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. McEvoy, J. Photochem. Photobiol. A. Chem. 148, 233 (2002)

    Article  CAS  Google Scholar 

  20. Y.M. Wu, J.L. Zhang, L. Xiao, F. Chen, Appl. Catal. B Environ. 88, 525 (2009)

    Article  CAS  Google Scholar 

  21. M. Qamar, Desalination 254, 108 (2010)

    Article  CAS  Google Scholar 

  22. L. Shivalingappa, J. Sheng, T. Fukami, Vacuum 48, 413 (1997)

    Article  CAS  Google Scholar 

  23. K.T. Ranjit, I. Willner, S.H. Bossmann, A.M. Braun, J. Catal. 204, 305 (2001)

    Article  CAS  Google Scholar 

  24. X.Z. Shen, Z.C. Liu, S.M. Xie, J. Guo, J. Hazard. Mater. 162, 1193 (2009)

    Article  CAS  Google Scholar 

  25. Y. Cong, B.Z. Tian, J.L. Zhang, Appl. Catal. B Environ 101, 376 (2011)

    Article  CAS  Google Scholar 

  26. D.G. Huang, S.J. Liao, W.B. Zhou, S.Q. Quan, L. Liu, Z.J. He, J.B. Wan, J. Phys. Chem. Solids 70, 853 (2009)

    Article  CAS  Google Scholar 

  27. Y.F. Ma, J.L. Zhang, B.Z. Tian, F. Chen, L.Z. Wang, J. Hazard. Mater. 182, 386 (2010)

    Article  CAS  Google Scholar 

  28. J. Lin, J.C. Yu, J. Photochem. Photobio. A Chem. 116, 63 (1998)

    Article  CAS  Google Scholar 

  29. Y. Li, D.-S. Hwang, N.H. Lee, S.-J. Kim, Chem. Phys. Lett. 404, 25 (2005)

    Article  CAS  Google Scholar 

  30. X. Chen, C. Burda, J. Phys. Chem. B 108, 15446 (2004)

    Article  CAS  Google Scholar 

  31. P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122 (2000)

    Article  CAS  Google Scholar 

  32. H. Perron, J. Vandenborre, C. Domain, R. Drot, J. Roques, E. Simoni, J.J. Ehrhardt, H. Catalette, Surf. Sci. 601, 518 (2007)

    Article  CAS  Google Scholar 

  33. X. Chen, Y.B. Lou, A. Samia, C. Burda, J. Gole, Adv. Funct. Mater. 15, 41 (2005)

    Article  CAS  Google Scholar 

  34. H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003)

    Article  CAS  Google Scholar 

  35. J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B 108, 1230 (2003)

    Article  Google Scholar 

  36. C.S. Fadley, D.A. Shirley, Phys. Rev. A 2, 1109 (1970)

    Article  Google Scholar 

  37. P. Wardman, J. Phys. Chem. Ref. Data 18, 1637 (1989)

    Article  CAS  Google Scholar 

  38. S. Qourzal, N. Barka, M. Tamimi, A. Assabbane, Y. Ait-Ichou, Appl. Catal. A 334, 386 (2008)

    Article  CAS  Google Scholar 

  39. S. Yamazaki, S. Matsunaga, K. Hori, Water Res. 35, 1022 (2001)

    Article  CAS  Google Scholar 

  40. A. Mills, M.A. Valenzuela, J. Photochem. Photobio. A Chem 165, 25 (2004)

    Article  CAS  Google Scholar 

  41. S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Appl. Energy 87, 2230 (2010)

    Article  CAS  Google Scholar 

  42. S. Boumaza, R. Bouarab, M. Trari, A. Bouguelia, Energy Convers. Manage. 50, 62 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Nature Science Foundation of China (20977030, 21173077), National Basic Research Program of China (2010CB732306), The Project of International Cooperation of the Ministry of Science and Technology of China (2011DFA50530), Science and Technology Commission of Shanghai Municipality (10520709900, 10JC1403900) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Zhang, J., Tian, B. et al. Synthesis of visible light-driven Eu, N co-doped TiO2 and the mechanism of the degradation of salicylic acid. Res Chem Intermed 38, 1947–1960 (2012). https://doi.org/10.1007/s11164-012-0516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0516-y

Keywords

Navigation