Skip to main content
Log in

Pyrolysis of pine and beech wood under isothermal conditions: the conventional kinetic approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pyrolysis of pine and beech wood was investigated by isothermal thermogravimetry at five different temperatures (280, 290, 300, 310, and 320 °C) in an atmosphere of flowing nitrogen. It was found that isothermal pyrolysis of pine and beech can be described by three-dimensional diffusion mechanisms with different reaction geometry (Jander type for pine and Ginstling–Brounstein type for beech). It was established that, for both systems, values of the apparent activation energy (E a) calculated in an extrapolated temperature range coincide with values calculated by use of the classical Arrhenius equation. It was found that different values of the kinetic data and diffusion geometry of the volatile products probably result from slight changes of the structure and chemical composition of the wood which occur during pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Demirbas, G. Arin, Energy Sources 24, 71 (2002)

    Google Scholar 

  2. B.V. Babu, A.S. Chaurasia, Energy Convers. Manag. 44, 2135 (2003)

    Article  CAS  Google Scholar 

  3. B.V. Babu, A.S. Chaurasia, Energy Convers. Manag. 44, 2251 (2003)

    Article  CAS  Google Scholar 

  4. B.V. Babu, A.S. Chaurasia, Energy Convers. Manag. 45, 53 (2004)

    Article  CAS  Google Scholar 

  5. B.V. Babu, A.S. Chaurasia, Chem. Eng. Sci. 59, 611 (2004)

    Article  CAS  Google Scholar 

  6. C.A. Koufopanos, G. Maschio, A. Lucchesi, The. Can. J. Chem. Eng. 67, 75 (1989)

    Article  CAS  Google Scholar 

  7. A.K. Sadhukhan, P. Gupta, R.K. Saha, Bioresour. Technol. 100, 3134 (2009)

    Article  CAS  Google Scholar 

  8. R.K. Agrawal, Thermochim. Acta 91, 343 (1985)

    Article  CAS  Google Scholar 

  9. B.M. Wagenaar, W. Prins, W.P.M. van Swaaij, Fuel Process. Technol. 36, 291 (1993)

    Article  CAS  Google Scholar 

  10. C. Di Blasi, C. Branca, Ind. Eng. Chem. Res. 40, 5547 (2001)

    Article  Google Scholar 

  11. T. Willner, G. Brunner, Chem. Eng. Technol. 28, 1212 (2005)

    Article  CAS  Google Scholar 

  12. E. Grieco, G. Baldi, Chem. Eng. Sci. 66, 650 (2011)

    Article  CAS  Google Scholar 

  13. L. Yang, X. Chen, X. Zhou, W. Fan, Combust. Flame 133, 407 (2003)

    Article  CAS  Google Scholar 

  14. D.L. Pyle, C.A. Zaror, Chem. Eng. Sci. 39, 147 (1984)

    Article  CAS  Google Scholar 

  15. S. Vyazovkin, Thermochim. Acta 355, 155 (2000)

    Article  CAS  Google Scholar 

  16. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  CAS  Google Scholar 

  17. J.H. Sharp, G.W. Brindley, A.B.N. Narahari, J. Am. Ceram. Soc. 49, 379 (1966)

    Article  CAS  Google Scholar 

  18. J.D. Hancock, J.H. Sharp, J. Am. Ceram. Soc. 55, 74 (1972)

    Article  CAS  Google Scholar 

  19. F. Kollmann, D. Fengel, Holz als Roh-und Werk-stoff (Ger) 23, 461 (1965)

    CAS  Google Scholar 

  20. D.K. Shen, S. Gu, J. Baosheng, M.X. Fang, Bioresour. Technol 102, 2047 (2011)

    Article  CAS  Google Scholar 

  21. F.C. Beall, Wood Fiber 1, 215 (1969)

    Google Scholar 

  22. F. Shafizadeh, in The Chemistry of Solid Wood, Advances in Chemistry Series 207, ed. by R.M. Rowell (American Chemical Society, Washington, DC, 1984), p. 489

    Chapter  Google Scholar 

  23. P.T. Williams, S. Besler, Renew. Energy 7, 233 (1996)

    Article  CAS  Google Scholar 

  24. M. Bajus, Pet. Coal 52, 207 (2010)

    CAS  Google Scholar 

  25. R.S. Miller, J. Bellan, “A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics”, Paper 96F—057, Western States Section of the Combustion Institute, USA (1996)

  26. M.G. Grǿnli, G. Várhegyi, C.D. Blasi, Ind. Eng. Chem. Res. 41, 4201 (2002)

    Article  Google Scholar 

  27. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520, 1 (2011)

    Article  CAS  Google Scholar 

  28. L.T. Vlaev, I.G. Markovska, L.A. Lyubchev, Thermochim. Acta 1, 406 (2003)

    Google Scholar 

  29. J. Reina, E. Velo, L. Puigjaner, Ind. Eng. Chem. Res. 37, 4290 (1998)

    Article  CAS  Google Scholar 

  30. C. Bruch, B. Peters, T. Nussbaumer, Fuel 82, 729 (2003)

    Article  CAS  Google Scholar 

  31. C. Branca, A. Albano, C. Di Blasi, Thermochim. Acta 429, 133 (2005)

    Article  CAS  Google Scholar 

  32. C. Di Blasi, Prog. Energy Comb. Sci. 34, 47 (2008)

    Article  Google Scholar 

  33. K. Németh, Faanyagkémia–Kémiai szerkezet, reakciók (Mezõgazdasági Szaktudás Kiadó, Budapest, 1997), pp. 19–27

    Google Scholar 

  34. A. Pfriem, PhD Dissertation, TU Dresden, Germany (2006), pp. 87–106

  35. M.S. Sweet, J.E. Winandy, Holzforschung 53, 311 (1999)

    Article  CAS  Google Scholar 

  36. J.E. Winandy, P.K. Lebow, Wood Fiber Sci. 33, 239 (2001)

    CAS  Google Scholar 

  37. M.J. Antal, M. Grønli, Ind. Eng. Chem. Res. 42, 1619 (2003)

    Article  CAS  Google Scholar 

  38. A.V. Bridgwater, A.J. Toft, J.G. Brammer, Renew. Sust. Energy Rev. 6, 181 (2002)

    Article  CAS  Google Scholar 

  39. M.J. Antal, G. Várhegyi, Ind. Eng. Chem. Res. 34, 703 (1995)

    Article  CAS  Google Scholar 

  40. S.C. Ferguson, A. Dahale, B. Shotorban, S. Mahalingam, D.R. Weise, Combust. Sci. Technol. 185, 435 (2013)

    Article  CAS  Google Scholar 

  41. W.K. Tang, US Forest Service Paper FPL 71, (Forest Products Laboratory, Madison, 1967) pp. 16–18

Download references

Acknowledgments

The authors would like to thank the Ministry of Science and Environmental Protection of Serbia, under projects172015 and III43009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija M. Janković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janković, B.Ž., Janković, M.M. Pyrolysis of pine and beech wood under isothermal conditions: the conventional kinetic approach. Res Chem Intermed 41, 2201–2219 (2015). https://doi.org/10.1007/s11164-013-1339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1339-1

Keywords

Navigation