Skip to main content
Log in

Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the uptake of hexavalent chromium from aqueous solutions by mosambi (Citrus limetta) peel dust. A batch adsorption procedure was used to test the suitability of the fruit peel dust as an adsorbent for hexavalent chromium (reduction-coupled adsorption). The effect of different conditions, for example contact time, sorbate concentration, solution pH, and temperature, on sorption were investigated, and maximum uptake of hexavalent chromium from contaminated water was 250 mg g−1 at pH 2.0 and 40 °C. Hexavalent chromium uptake from contaminated water followed a pseudo-first-order rate expression. ΔG 0, ΔH 0, and ΔS 0 were evaluated and it was concluded that sorption was feasible, spontaneous, and endothermic in nature. The process is in good agreement with the Langmuir isotherm. The nature of possible adsorbent–metal ion interactions was examined by use of FTIR spectroscopy. This revealed the involvement in chromium binding of –OH, –NH, C=O, and C–O groups on the cell surfaces. This study indicated that mosambi peel can be used as an effective and environmentally friendly biosorbent for treatment of hexavalent chromium-containing contaminated water.

Graphical Abstract

Hexavalent chromium compounds are more toxic than trivalent chromium because of their high water solubility and mobility. Mosambi (Citrus limetta) peel effectively removes hexavalent chromium from contaminated water by reducing it to trivalent chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C e :

Equilibrium concentration of solute in the bulk solution (mg L−1)

C 0 :

Initial concentration of adsorbate in contact with the adsorbent (mg L−1)

q :

Amount of metal ion adsorbed by the adsorbent (mg g−1)

dq :

Differential of q

q e :

Amount of the adsorbate adsorbed at equilibrium (mg g−1)

Q max :

Maximum adsorption capacity of the adsorbent (mg g−1)

b :

Langmuir’s constant

C Ae :

Equilibrium concentration of solute on the adsorbent (mg L−1)

K F :

The Freundlich constant related to adsorption capacity (mg g−1 (mg L−1)−1/n)

n :

Dimensionless exponents of the Freundlich equation

K c :

Equilibrium constant

q t :

Amount of adsorbate adsorbed at time t (mg g−1)

t :

Time of contact

V :

Volume of adsorbate in contact with the adsorbent (L)

R :

Universal gas constant

ΔG 0 :

Change in standard free energy (kJ mol−1)

ΔH 0 :

Change in standard enthalpy (kJ mol−1)

ΔS 0 :

Change in standard entropy (J K−1 mol−1)

T :

Absolute temperature (K)

References

  1. B. Saha, C. Orvig, Coord. Chem. Rev. 254, 2959 (2010)

    Article  CAS  Google Scholar 

  2. R. Saha, R. Nandi, B. Saha, J. Coord. Chem. 64, 1782 (2011)

    Article  CAS  Google Scholar 

  3. C. Bourotte, R. Bertolo, M. Almodovar, R. Hirata, Annals Braz. Acad. Sci. 81, 227 (2009)

    CAS  Google Scholar 

  4. J. Mandal, K.M. Chowdhury, K.K. Paul, B. Saha, J. Coord. Chem. 63, 99 (2010)

    Article  CAS  Google Scholar 

  5. A.K. Das, Coord. Chem. Rev. 248, 81 (2004)

    Article  CAS  Google Scholar 

  6. M. Islam, B. Saha, A.K. Das, J. Mol. Catal. A Chem. 266, 21 (2007)

    Article  CAS  Google Scholar 

  7. R. Saha, A. Ghosh, B. Saha, J. Coord. Chem. 64, 3729 (2011)

    Article  CAS  Google Scholar 

  8. K.M. Chowdhury, J. Mandal, B. Saha, J. Coord. Chem. 2009, 62 (1871)

    Google Scholar 

  9. D.E. Kimbrough, Y. Cohen, A.M. Winer, L. Creelman, C.A. Mabuni, Crit. Rev. Environ. Sci. Technol. 29, 1 (1999)

    Article  CAS  Google Scholar 

  10. D. Park, Y.S. Yun, J.Y. Kim, J.M. Park, Chem. Eng. J. 136, 173 (2008)

    Article  CAS  Google Scholar 

  11. S. Rengaraj, K.H. Yon, S.H. Moon, J. Hazard. Mater. 87, 273 (2001)

    Article  CAS  Google Scholar 

  12. D. Petruzzelli, R. Passino, G. Tiravanti, Ind. Eng. Chem. Res. 34, 2612 (1995)

    Article  CAS  Google Scholar 

  13. C.A. Kozlowski, W. Walkosiak, Water Res. 36, 4870 (2002)

    Article  CAS  Google Scholar 

  14. F. Akbal, S. Camci, Chem. Eng. Technol. 33, 1655 (2010)

    Article  CAS  Google Scholar 

  15. E. Salazar, M.I. Ortiz, A.M. Urtiaga, Ind. Eng. Chem. Res. 31, 1516 (1992)

    Article  CAS  Google Scholar 

  16. H. Ozaki, K. Sharma, W. Saktaywin, Desalination 144, 287 (2002)

    Article  CAS  Google Scholar 

  17. T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Sep. Purif. Technol. 41, 73 (2005)

    Article  CAS  Google Scholar 

  18. S. Babel, T.A. Kurniawan, J. Hazard. Mater. B97, 219 (2003)

    Article  Google Scholar 

  19. M.X. Loukidou, T.D. Karapantsios, A.I. Zouboulis, K.A. Malis, Ind. Eng. Chem. Res. 43, 1748 (2004)

    Article  CAS  Google Scholar 

  20. K. Parvathia, R. Nagendrana, Sep. Sci. Technol. 42, 625 (2007)

    Article  Google Scholar 

  21. L.K. Cabatingan, R.C. Agapay, J.L.L. Rakels, M. Ottens, L.A.M. Vaner Wielen, Ind. Eng. Chem. Res. 40, 2302 (2001)

    Article  CAS  Google Scholar 

  22. M. Kobya, Bioresour. Technol. 91, 317 (2004)

    Article  CAS  Google Scholar 

  23. P. Suksabye, P. Thiravetyan, W. Nakbanpote, S. Chayabutra, J. Hazard. Mater. 141, 637 (2007)

    Article  CAS  Google Scholar 

  24. A. Verma, S. Chakraborty, J.K. Basu, Sep. Purif. Technol. 50, 336 (2006)

    Article  CAS  Google Scholar 

  25. V. Sarin, K.K. Pant, Bioresour. Technol. 97, 15 (2006)

    Article  CAS  Google Scholar 

  26. Y. Khambhaty, K. Mody, S. Basha, B. Jha, Chem. Eng. J. 145, 489 (2009)

    Article  CAS  Google Scholar 

  27. G. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthes, M. Krimissa, Appl. Geochem. 22, 249 (2007)

    Article  CAS  Google Scholar 

  28. D. Mohan, K.P. Singh, V.K. Singh, Ind. Eng. Chem. Res. 1027, 44 (2005)

    Google Scholar 

  29. K.K. Singh, R. Rastogi, S.H. Hasan, J. Colloid Interface Sci. 290, 61 (2005)

    Article  CAS  Google Scholar 

  30. K. Srividya, K. Mohanty, Chem. Eng. J. 155, 666 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the CSIR, New Delhi, India, for financial support in the form of a project and a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rumpa Saha or Bidyut Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, R., Mukherjee, K., Saha, I. et al. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed 39, 2245–2257 (2013). https://doi.org/10.1007/s11164-012-0754-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0754-z

Keywords

Navigation